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Abstract: We consider Hawkes self-exciting processes with a baseline driven

by an Itô semimartingale with possible jumps. Under in-fill asymptotics, we

characterize feasible statistics induced by central limit theory for empirical

average and variance of local Poisson estimates. As a by-product, we de-

velop a test for the absence of a Hawkes component and a test for baseline

constancy. Simulation studies corroborate asymptotic theory. An empirical

application on high-frequency data of the E-mini S&P500 future contracts

shows that the absence of a Hawkes component and baseline constancy is

always rejected.
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1. Introduction

Point processes are widely used in econometrics to characterize event times.

The main stylized fact in this strand of literature, the presence of event cluster-

ing in time, motivates the so-called Hawkes self-exciting processes (see Hawkes

(1971a,b)). If we define Nt as the aggregated number of events up to time t and

λt its corresponding intensity, a standard definition of a Hawkes self-exciting

process is given by

λt = µ+

∫ t

0

ϕ(t− s) dNs, (1.1)
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where µ > 0 is the Poisson baseline and ϕ is the nonnegative exciting kernel.

The particular case ϕ = 0 corresponds to a classical Poisson process, so that we

can view Hawkes processes as a natural extension of Poisson processes.

An early application of Hawkes processes evolves in seismology (see Rubin

(1972), Vere-Jones (1978), Ozaki (1979), Vere-Jones and Ozaki (1982) and Ogata

(1978)). More recently, Ikefuji et al. (2022) analyze the impact of earthquake

risk based on marked Hawkes processes. There are also applications in finan-

cial econometrics (see Yu (2004), Bowsher (2007), Embrechts, Liniger and Lin

(2011) and Aı̈t-Sahalia, Laeven and Pelizzon (2014)), finance (see Large (2007),

Aı̈t-Sahalia, Cacho-Diaz and Laeven (2015) and Fulop, Li and Yu (2015)) and

quantitative finance (see Chavez-Demoulin, Davison and McNeil (2005), Bacry

et al. (2013a) and Jaisson and Rosenbaum (2015)). See also Liniger (2009) and

Hawkes (2018) with the references therein. More recently, Corradi, Distaso and

Fernandes (2020) develop a test for conditional independence in quadratic vari-

ation of jumps. A bootstrap approach is developed in Cavaliere et al. (2023).

Christensen and Kolokolov (2024) propose an unbounded intensity model for

point processes. Potiron and Volkov (2025) consider estimation of latency.

There already exists successful attempts to accommodate for time-varying

parameter Hawkes processes. Chen and Hall (2013) allow for a nonrandom para-

metric time-varying baseline. Their in-fill asymptotics based on random obser-

vation times of order n within the time interval [0, T ] for a fixed horizon time T

exploits a single boosting of the baseline, i.e., λ
(n)
t = αnµt +

∫ t

0
ϕ(t− s) dN

(n)
s ,

where αn → ∞ is a scaling sequence when n → ∞. They derive a central

limit theorem (CLT) for the Maximum Likelihood Estimator (MLE) of param-

eters related to the baseline and kernel. Clinet and Potiron (2018) consider

stochastic time-varying baseline and kernel parameters in the exponential ker-

nel case, and exploits a joint boosting of the baseline and the kernel, i.e., λ
(n)
t =

nµt +
∫ t

0
nat exp(−nbt(t− s)) dN

(n)
s to derive CLTs on integrated baseline and

parameters with local MLE. Kwan, Chen and Dunsmuir (2023) revisit Chen and

Hall (2013) in the exponential kernel case and with the same in-fill asymptotics

as in Clinet and Potiron (2018), i.e., λ
(n)
t = nµt +

∫ t

0
na exp(−nb(t− s)) dN

(n)
s .

They advocate the use of in-fill asymptotics for statistical inference to better

match high-frequency data widely used, for example, in financial applications

(Aı̈t-Sahalia and Jacod (2014)). Under large T asymptotics, Roueff, von Sachs

and Sansonnet (2016) and Roueff and Von Sachs (2019) introduce a new class

of locally stationary mutually exciting processes that permits to calculate ap-

proximations of first and second order moments based on local Bartlett non-

parametric estimators. A nonparametric estimation approach based on locally
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fitting B-splines is given by Mammen and Müller (2023), while Omi, Hirata

and Aihara (2017) study a Bayesian method with nonrandom parametric time-

varying baseline. Recent works also include spectral parametric estimation for

misobserved Hawkes processes, i.e., when the exact locations of points are un-

known but only the number of points on each bin are known, by Cheysson and

Lang (2022) with a setting also covering a time-varying baseline.

Empirical evidence suggests that the baseline is time-varying. Chen and Hall

(2013) report in their empirical study (Section 5.2, pp. 7–10) that goodness-of-

fit results are in favor of their time-varying baseline model compared to a group

of alternatives. In Figure 2 (p. 20), they document the time-varying nonrandom

function for both polynomial and exponential kernel. This nonrandom path is

also visible in Figure 2 (p. 3488) from Clinet and Potiron (2018). Besides, the

empirical findings in the two aforementioned papers suggest that there may be

a remaining stochastic effect, and Rambaldi, Pennesi and Lillo (2015) document

that there are frequent intensity bursts in the baseline.

In this paper, we consider Hawkes processes with a baseline driven by an Itô

semimartingale with possible jumps, namely

µt = µ0 +

∫ t

0

bs ds+

∫ t

0

σs dWs + (δ1{|δ|≤1}) ⋆ (µ− ν)t + (δ1{|δ|>1}) ⋆ µt
.

The Itô semimartingale baseline is not allowed by any of the aforementioned

work and this model suits the three aforementioned empirical facts for the base-

line intensity: time-variation, stochasticity, and bursts. For inference purposes,

we consider in-fill asymptotics with joint boosting of the baseline and the ker-

nel. We assume that the kernel satisfies the short-range condition. It extends

the asymptotic analysis of Clinet and Potiron (2018) and Kwan, Chen and Dun-

smuir (2023) by not imposing an exponential kernel. Here, in-fill asymptotics

are desirable because we can incorporate random features of the baseline into

asymptotic variances in the CLT.

Our main result (Theorem 4.1) is a feasible joint CLT of suitably rescaled

empirical average and variance of local Poisson estimates. This contribution

extends the papers on time-varying parameter Hawkes processes, which are ei-

ther concerned with log-likelihood function or nonparametric locally stationary

methods to estimate the kernel. The key ingredient in deriving our feasible

CLTs is a mix of (a) decomposing the estimation error into an error originating

from the time-varying baseline and another related to the Hawkes structure, (b)

studying the kernel resolvent and its relations with the Laplace transform of the

kernel, and (c) using the martingale representation of the intensity based on the

convolution of the resolvent kernel and the martingale. The representation in
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(c) extends the machinery of Lemma 3 in Bacry et al. (2013a), which considers

an invariant baseline and large T asymptotics, to the time-varying baseline and

in-fill asymptotics. However, the study of (a) and (b) is new. With the decom-

position in (a), a truncation to remove the jumps from the Itô semimartingale

baseline allows us to use Theorem IX.7.28 (pp. 590–591) in Jacod and Shiryaev

(2013).

As a by-product from our main result in a high-frequency setting, we pro-

vide five main corollaries. For estimation we demonstrate: (i) estimation of the

integrated intensity
∫ T

0
λtdt; (ii) estimation of the integrated baseline

∫ T

0
µtdt;

(iii) estimation of the integrated volatility of the baseline
∫ T

0
σ2
t dt. For testing

we show: (iv) hypothesis testing for the absence of a Hawkes component; (v)

hypothesis testing for baseline constancy. If Nt is a nonhomogeneous Poisson

process, i.e., the intensity λt is nonrandom, there is a body of literature (see,

e.g., Leemis (1991)) for (i). It provides consistency and CLT in asymptotics

exploiting independent realizations of Nt available over [0, T ]. We accommodate

for a larger class of processes, i.e., the intensity is random but in the absence

of a Hawkes component, and use in-fill asymptotics instead. Two papers pro-

vide inference for (iii), but without a Hawkes component, namely Kimura and

Yoshida (2016) and Stoltenberg, Mykland and Zhang (2022). Our strategy for

(iv) differs from Dachian and Kutoyants (2006), who consider parametric and

non parametric composite alternatives with large T asymptotics, and Türkmen

and Cemgil (2018), who develop a Bayesian approach. Finally, (ii) and (v) are

new to the literature.

The remainder of this paper is organized as follows. We provide the model in

Section 2, and we introduce the estimation strategy in Section 3. We give our

main feasible CLT result in Section 4. We investigate estimation problems (i)-

(ii)-(iii) and testing problems (iv)-(v) in Section 5. In Section 6, we carry out a

finite sample analysis, which corroborates the asymptotic theory. In Section 7,

an empirical application on high-frequency data of the E-mini S&P500 future

contracts is presented. Finally, we provide concluding remarks in Section 8. All

the proofs are gathered in Appendix A.

2. Model

In this section, we introduce Hawkes self-exciting processes with a baseline

driven by an Itô semimartingale with possible jumps when the horizon T is

finite.

We defineNt as a simple point process on [0, T ], i.e., a family {N(C)}C∈B([0,T ])
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of random variables with values in N where B([0, T ]) is the Borel σ-algebra on

the compact space [0, T ], N(C) =
∑

i∈N 1C(Ti) and {Ti}i∈N is a sequence of

R+-valued random event times such that, a.s. T0 = 0 < T1 < . . . < TNT
<

T < TNT+1. In informal terms, Nt counts the number of events on [0, t]. Let

B = (Ω,F , {Ft}t∈[0,T ],P) be a filtered probability space which satisfies the usual

conditions. For any t ∈ [0, T ], we denote the filtration generated by some stochas-

tic process X as FX
t = σ{Xs : 0 ≤ s ≤ t}. We assume that, for any t ∈ [0, T ],

the filtration generated by the point process Nt is included in the main fil-

tration, i.e., FN
t ⊂ Ft. Any nonnegative Ft-progressively measurable process

{λt}t∈[0,T ] such that E[N((a, b]) | Fa] = E
[ ∫ b

a
λsds

∣∣Fa

]
a.s. for all intervals

(a, b], is called an Ft-intensity of Nt. Intuitively, the intensity corresponds to

the expected number of events given the past information, i.e.,

λt = lim
u→0

E[
Nt+u −Nt

u
| Ft] a.s..

For background on point processes, the reader can consult Daley and Vere-Jones

(2003, 2008) and Jacod and Shiryaev (2013).

The present work is concerned with simple point processes Nt admitting an

Ft-intensity of the form

λt = µt +

∫ t

0

ϕ(t− s) dNs. (2.1)

Here, we have that µt is the F̃t-Itô semimartingale baseline process with F̃t ⊂ Ft

and ϕ is the nonnegative exciting kernel. Since µt follows an F̃t-Itô semimartin-

gale, then we can construct a filtered extension B = (Ω,F , {F t}t∈[0,T ],P) on

which are defined a standard Brownian motion W and a Poisson random mea-

sure µ on R+ × E, which is compensated by ν(dt, dx) = dt ⊗ Ft(dx). Here, we

assume that E is an auxiliary Polish space and that Ft is σ-finite, infinite, and

optional measure, having no atom. Then, the baseline µt has the Grigelionis

representation of the form

µt = µ0 +

∫ t

0

bs ds+

∫ t

0

σs dWs +

∫ t

0

∫
E

(δ(s, z)1{|δ(s,z)|≤1})(µ− ν)(ds, dz)

+

∫ t

0

∫
E

(δ(s, z)1{|δ(s,z)|>1})µ(ds, dz).

(2.2)

Here, we have that µ0 is F0-measurable and, for any t ∈ [0, T ], bt and σt are

R-valued predictable processes on (Ω,F , {F̃t}t∈[0,T ],P) such that both integral

defined in Eq. (2.2) are well-defined, and δ is a R-valued predictable function on
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Ω×R+×E such that both integral defined in Eq. (2.2) are well-defined. Although

we have extended the filtered space, in the sequel we keep the original space

B = (Ω,F , {Ft}t∈[0,T ],P) pretending that the Grigelionis form above is defined

on it, to avoid more complicated notation. For further details of definitions and

notations, see Section 1.4.3 (pp. 47-49) in Aı̈t-Sahalia and Jacod (2014). The

baseline model Eq. (2.2) is general in the sense that it is a slightly restricted

version of a semimartingale. The semimartingale class is the most general class

of “stochastic integrator” (Jacod and Shiryaev, 2013).

3. Estimation

In this section, we introduce the in-fill asymptotics. We also introduce empirical

average and variance of local Poisson estimates.

We prefer most of the time not to write explicitly the dependence on n,

and any limit theorem refers to the convergence when n → ∞. For inference

purposes, we consider in-fill asymptotics with joint boosting of the baseline and

the kernel, i.e.,

λt = nµt +

∫ t

0

nϕ(n(t− s)) dNs. (3.1)

In Eq. (3.1), in-fill asymptotics are based on random observation times of order

n within the time interval [0, T ] for a finite horizon time T . They extend the

asymptotic analysis of Clinet and Potiron (2018), Kwan, Chen and Dunsmuir

(2023) and Potiron and Volkov (2025), also based on joint boosting, by not im-

posing an exponential or a mixture of generalized gamma kernel. Christensen

and Kolokolov (2024) consider boosting of the baseline to detect intensity bursts

without an Hawkes component. They are different from Chen and Hall (2013)

in-fill asymptotics which considers no boosting of the kernel. Here, in-fill asymp-

totics are desirable because we can incorporate random features of the baseline

into asymptotic variances in the CLT.

For a finite horizon T , we consider M = ⌊T/∆n⌋ intervals with equal length

∆n such that
⋃M

i=1[(i−1)∆n, i∆n) ⊂ [0, T ), where ⌊·⌋ denotes the floor function.
For i = 1, . . . ,M , we define an estimator for local Poisson estimates on the i-th

interval [(i− 1)∆n, i∆n) as

λ̂i =
1

∆n
(Ni∆n− −N(i−1)∆n

).

Then, we propose an estimator for empirical average and two estimators for



/High-frequency estimation of Hawkes semimartingale baseline 7

empirical variance of local Poisson estimates as

M̂ean = ∆n

⌊T/∆n⌋∑
i=1

λ̂i = NT ,

V̂ar1 =

⌊T/∆n⌋∑
i=2

(
∆iλ̂

)2
1{|∆iλ̂|≤α∆−ω

n },

V̂ar2 =

⌊T/(2∆n)⌋∑
i=2

(
∆2i−2λ̂+∆2i−1λ̂

2

)2

1{|(∆2i−1λ̂+∆2iλ̂)/2|≤α∆−ω
n }.

Here, we have that ∆iλ̂ = λ̂i − λ̂i−1. We also have that α > 0 and ω are

truncation parameters. Since the intensity explodes asymptotically, the three

aforementioned estimators also diverge to infinity. The two variance estimators

with a different scale are requested for the applications in Section 5. We consider

a truncation in our variance estimators since they would be contaminated by

the jumps otherwise.

Moreover, we define the diverging target values as

Mean = n
1

1− ∥ϕ∥1

∫ T

0

µt dt, (3.2)

Var1 = n2
1

(1− ∥ϕ∥1)2

∫ T

0

(
2

3
σ2
t +

1

1− ∥ϕ∥1
2

c
µt

)
dt, (3.3)

Var2 = n2
1

(1− ∥ϕ∥1)2

∫ T

0

(
2

3
σ2
t +

1

1− ∥ϕ∥1
1

2c
µt

)
dt. (3.4)

In practice, the order of observation number n is unknown. Thus, the length

of intervals ∆n cannot be chosen directly. Instead, we can estimate it as

∆n =
c√
NT

.

We use c = 0.5, which works the best in our numerical studies.

We define the non diverging error, which is also standardized by its conver-

gence rate, as

X =


∆−1

n n−1
(
M̂ean−Mean

)
∆

− 1
2

n n−2
(
V̂ar1 −Var1

)
∆

− 1
2

n n−2
(
V̂ar2 −Var2

)
 .

For any t ∈ [0, T ], we define ϑ̆t as ϑ̆t =
µt

c(1−∥ϕ∥1)3
, σ̆t as σ̆t =

σt

1−∥ϕ∥1
, and wt as

wtw
⊤
t =

ϑ̆t 0 0

0 σ̆4
t + 4σ̆2

t ϑ̆t + 12ϑ̆2t
29
24 σ̆

4
t +

3
2 σ̆

2
t ϑ̆t +

3
2 ϑ̆

2
t

0 29
24 σ̆

4
t +

3
2 σ̆

2
t ϑ̆t +

3
2 ϑ̆

2
t 2σ̆4

t + 2σ̆2
t ϑ̆t +

3
2 ϑ̆

2
t

 .
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We also define the diverging asymptotic variance as Σ = n2
∫ T

0
wtw

⊤
t dt. More-

over, we define the estimator of the diverging asymptotic variance as

Σ̂ =

Σ̂11 0 0

0 Σ̂22 Σ̂23

0 Σ̂23 Σ̂33

 .
Here, the components of the matrix are defined as Σ̂11 = 2

3

(
V̂ar1− V̂ar2

)
, Σ̂22 =

3
4 κ̂4,1 − 3η̂κ̂3,1 +9η̂2κ̂2,1, Σ̂23 = 29

32 κ̂4,1 −
69
8 η̂κ̂3,1 +

63
8 η̂

2κ̂2,1, and Σ̂33 = 3
2 κ̂4,2 −

6η̂κ̂3,2 + 18η̂2κ̂2,2. We also define κ̂2,1 as κ̂2,1 = ∆−3
n

∑⌊T/∆n⌋
i=2 λ̂2i1{|∆iλ̂|≤nϖi},

and κ̂2,2 as κ̂2,2 = ∆−3
n

∑⌊T/(2∆n)⌋
i=2 ( λ̂i−1+λ̂i

2 )21{|(∆2i−1λ̂+∆2iλ̂)/2|≤nϖi}. Addi-

tionally, we can define κ̂3,1 as κ̂3,1 = ∆−2
n

∑⌊T/∆n⌋
i=2 λ̂i(∆iλ̂)

2
1{|∆iλ̂|≤nϖi}, as

well as κ̂3,2 is defined as

κ̂3,2 = ∆−2
n

⌊T/(2∆n)⌋∑
i=2

λ̂i−1 + λ̂i
2

(
∆2i−2λ̂+∆2i−1λ̂

2
)21{|(∆2i−1λ̂+∆2iλ̂)/2|≤nϖi}.

Finally, we define κ̂4,1 as κ̂4,1 = ∆−1
n

∑⌊T/∆n⌋
i=1 (∆iλ̂)

4
1{|∆iλ̂|≤nϖi}, but also κ̂4,2

is defined as κ̂4,2 = ∆−1
n

∑⌊T/(2∆n)⌋
i=1 (∆2i−2λ̂+∆2i−1λ̂

2 )41{|(∆2i−1λ̂+∆2iλ̂)/2|≤nϖi},

and η̂ as η̂ = 2
3
∆2

n(V̂ar1−V̂ar2)

M̂ean
.

4. Theory

In this section, we start with showing an existence result for Hawkes processes

with a baseline driven by an Itô semimartingale. Then, our main result charac-

terizes feasible statistics induced by central limit theory for empirical average

and variance of local Poisson estimates.

As the Itô semimartingale is not bounded, it can in particular become nonpos-

itive. This is incompatible with the constraint of a positive baseline for getting

a well-defined Hawkes process. Let us introduce a set of assumptions required

for the existence of Hawkes processes with a time-varying baseline driven by an

Itô semimartingale.

Assumption 1.

(a) The baseline is positive a.e. a.s., i.e., P(µt > 0∀t ∈ [0, T ]) = 1.

(b) The baseline is integrable a.s., i.e., P(
∫ T

0
µs ds <∞) = 1.

(c) For any 0 ≤ t ≤ T , we have Ft = F̃t ∨ FN
t , where the filtration F̃t

is independent from the other filtration FN
t . We also have N t is a 2-

dimensional Ft-adapted Poisson process of intensity 1 that generates Nt,

i.e., Nt =
∫
[0,t]×R 1[0,λs](x)N(ds× dx).
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(d) The L1 norm of the kernel is strictly less than one, i.e., ∥ϕ∥1 =
∫∞
0
ϕ(t)dt <

1.

Assumption 1(a) implies that the point process is well-defined and is weaker

than the assumption from Clinet and Potiron (2018), who requires that the

baseline belongs to a compact space. Assumption 1(b) is already an assumption

in the simpler case of heterogeneous Poisson processes without a self-exciting

kernel (see, e.g., Daley and Vere-Jones (2003)), and is also required to estab-

lish existence in Clinet and Potiron (2018) (see Assumption E (ii), p. 3476).

Assumption 1(c) corresponds to Poisson imbedding (Brémaud and Massoulié

(1996), Section 3, pp. 1571-1572) and assumes independence between F̃t and

FN
t . It is already required in Clinet and Potiron (2018) (see the last sentence

before Theorem 5.1, p. 3476). In particular, Nt is defined as the point process

counting the points of N below the curve t → λt. Finally, Assumption 1(d) is

necessary to obtain a stationary intensity with finite first moment (see Lemma

1 (p. 495) in Hawkes and Oakes (1974) and Theorem 1 (p. 1567) in Brémaud

and Massoulié (1996)) in the time-invariant classical problem where Nt starts

from −∞.

We provide now our existence result establishing a new theory for jump pro-

cesses. It is obtained by extending the machinery of Poisson imbedding for

time-invariant Hawkes processes (Brémaud and Massoulié (1996)) to the time-

varying case. It also complements Theorem 5.1 (p. 3476) in Clinet and Potiron

(2018) in which the kernel is exponential.

Proposition 4.1. Under Assumption 1, there exists an Ft-adapted simple point

process Nt with an Ft-intensity of the form Eq. (2.1).

We define an alternative drift as b′t = bt −
∫
E
δ(t, z)1{|δ(t,z)|≤1}Ft(dz) for any

t ∈ [0, T ]. Finally, we define V b
a (f) as the total variation of f from a to b.

Let us introduce a set of assumptions required for the CLT for empirical

average and variances of local Poisson estimates.

Assumption 2.

(a) The kernel satisfies the short-range condition, i.e.,
∫∞
0
tϕ(t)dt <∞.

(b) There exists a c > 0 such that n∆2
n →P c.

(c) There exists a β ∈ [0, 1) such that sup
0≤t≤T

∫
min(|x|r, 1)Ft(dx) is a.s. finite.

(d) The truncation level satisfies ω ∈ (0, 1/(4− 2β)).

(e) For any k ∈ N∗ and any t ∈ [0, T ], we have E|bt|k <∞,E|σt|k <∞.

(f) We have that E
[
exp

(
1
2

∫ T

0
(b′s)

2

σ2
s
ds
)]
<∞.
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(g) The volatility process is a semimartingale, i.e., σ2
t = At +M

(σ)
t , where

At is a Ft-adapted cadlag process with finite variation and M (σ) is a

square-integrable martingale. Moreover, E|V T
0 (A)|k <∞ and E|σt−σs|k ≤

C(t− s)kγ for a γ > 0 and any k ∈ N∗.

Assumption 2(a) is required to obtain the asymptotic properties of the resol-

vent kernel and already appears in Exp. (8) (p. 125) from Brémaud and Mas-

soulié (2001). Assumption 2(b) is natural for local estimation. Assumptions 2(c)

and 2(d) are due to the presence of jumps, and can be found in Hypothesis (L-s)

(p. 522) from Jacod (2008). Assumption 2(e) is used in the proof of jumps and

also in the proof of the CLT. Assumption 2(f) is required to apply the Girsanov

theorem in our proofs. Assumption 2(g) is used in the proof of the CLT.

We define T as a 3-dimensional standard normal vector. We denote
L−s−−−→ as

the Ft-stable convergence for the Skorokhod topology on D([0, T ],R3). We pro-

vide now the result of CLT for empirical average and variances of local Poisson

estimates.

Theorem 4.1. Under Assumptions 1 and 2, there is a canonical 3-dimensional

standard Wiener extension of B, with the canonical standard Wiener process W̃t

such that

X
L−s−−−→

∫ T

0

wtdW̃t,

We also have the consistency of the estimator of non diverging asymptotic vari-

ance, i.e.,

n−2(Σ̂−Σ) →P 0. (4.1)

Moreover, we show the normalized CLT with feasible variance, i.e.,

n−2Σ̂
−1/2

X
L−s−−−→ T. (4.2)

5. Applications

In this section, we investigate estimation problems (i), (ii) and (iii). Testing

problems (iv) and (v) are also investigated.

5.1. Estimation of integrated intensity

We start with the estimation of the diverging integrated intensity

ΛT = n

∫ T

0

λt dt. (5.1)
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We consider the case when Nt is not a Hawkes process, i.e., ϕ(t) = 0. We have

applications in management science where the integrated intensity can be in-

terpreted as the arrival rate in a queuing system. We also have applications in

computer networks for the expected internet traffic, and seismology for the ex-

pected number of earthquakes. In finance, Hawkes process find applications, for

example, in modeling financial contagion (Aı̈t-Sahalia, Cacho-Diaz and Laeven

(2015)) and microstructure noise (Bacry et al. (2013b)), managing risk (Aı̈t-

Sahalia and Laeven (2023)), and measuring order latency (Potiron and Volkov

(2025)).

There are numerous work estimating Eq. (5.1), including consistency and

CLT. These concern the case when Nt is a nonhomogeneous Poisson process,

i.e., the intensity λt is nonrandom. They are based on asymptotics where sev-

eral independent realizations of independent realizations of Nt are available over

[0, T ], as opposed to the in-fill asymptotics of this paper. A pioneer work for non-

parametric estimation of Eq. (5.1) is Leemis (1991). A different nonparametric

approach based on kernel estimator is suggested by Lewis and Shedler (1976).

A wavelet-based nonparametric method can be found in Kuhl and Bhairgond

(2000). Parametric methods include and are not limited to Lee, Wilson and

Crawford (1991), Kuhl, Wilson and Johnson (1997), Kuhl and Wilson (2000)

and Kao and Chang (1988). Finally, a semiparametric framework is considered

in Kuhl and Wilson (2001).

We define the asymptotic variance of the non diverging mean estimator

n−1M̂ean as

AVar(n−1M̂ean) = c−1

∫ T

0

λt dt.

Moreover, we define the asymptotic variance estimator of M̂ean as

ÂVar(M̂ean) =
M̂ean

n2∆2
n

.

The following corollary gives the CLT for the mean estimator.

Corollary 5.1. Under Assumptions 1 and 2 and if we assume that ϕ(t) = 0,

we have

∆−1
n n−1(M̂ean− ΛT )√
AVar(n−1M̂ean)

L−s−−−→ N (0, 1). (5.2)

Moreover, we show the normalized CLT with feasible variance, i.e.,

∆−1
n (M̂ean− ΛT )√
ÂVar(M̂ean)

L−s−−−→ N (0, 1). (5.3)
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5.2. Estimation of integrated baseline

We continue with the estimation of the diverging integrated baseline

BT = n

∫ T

0

µt dt. (5.4)

We note that when Nt is not a Hawkes process, the integrated baseline is equal

to the integrated intensity. To the best of our knowledge, there is no method to

estimate the integrated baseline in Eq. (5.4).

We first estimate the L1 norm of the kernel as

∥̂ϕ∥1 = 1−

√√√√ 3M̂ean

2∆2
n

(
V̂ar1 − V̂ar2

) . (5.5)

In Eq. (5.5), we use the estimator from Hardiman and Bouchaud (2014) and we

replace their variance by 2
3

(
V̂ar1 − V̂ar2

)
since we have a time-varying baseline

in this paper. Then, we can estimate the diverging integrated baseline as

B̂T = (1− ∥̂ϕ∥1)M̂ean. (5.6)

We define the asymptotic variance of ∥̂ϕ∥1 as

AVar(∥̂ϕ∥1) =
∇f1(x)⊤Σ∇f1(x)

n2
,

where f1(x) = 1 −
√

3nMean
2c(x2−x3)

, and x = [0,Var1,Var2]
⊤. Moreover, we define

the estimator of the asymptotic variance as

ÂVar(∥̂ϕ∥1) =
∇f2(x̂)⊤Σ̂∇f2(x̂)

n2
,

where f2(x) = 1 −
√

3M̂ean
2∆2

n(x2−x3)
, and x̂ = [0, V̂ar1, V̂ar2]

⊤. In the following

corollary, we give the CLT for the integrated baseline.

Corollary 5.2. Under Assumptions 1 and 2, we have

∆
− 1

2
n n−1(B̂T −BT )√

AVar(∥̂ϕ∥1)n−2Mean2

L−s−−−→ N (0, 1). (5.7)

Moreover, we show the normalized CLT with feasible variance, i.e.,

∆
− 1

2
n (B̂T −BT )√

ÂVar(∥̂ϕ∥1)M̂ean
2

L−s−−−→ N (0, 1). (5.8)
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5.3. Integrated volatility of the baseline

The third application is the estimation of the diverging integrated volatility of

the baseline

IV = n2
∫ T

0

σ2
t dt. (5.9)

It can be seen as a measure of risk related to the integrated baseline. There are

two general papers providing estimators of IV in the absence of a Hawkes com-

ponent. Kimura and Yoshida (2016) provide in their Theorem 1 a general CLT

result on estimation of correlation between two continuous Itô semimartingales.

In their Theorem 2, the methodology is applied to the case where the inten-

sity follows a continuous Itô semimartingale. Stoltenberg, Mykland and Zhang

(2022) propose consistent estimators and CLT between one or more spot pa-

rameters associated with Itô semimartingales. Estimation of IV is treated in

Section 4 (pp. 13–17). The use of Theorem 2.4 (p. 6) allows the authors to de-

duce consistency of their estimator in Corollary 4.3 (p. 16). There is no CLT,

and they do not provide any asymptotic variance form. On the other hand, we

do provide a feasible CLT, in a more general framework with the presence of a

Hawkes component.

We estimate IV as

ÎV = (1− ∥̂ϕ∥1)2
(
2V̂ar2 −

1

2
V̂ar1

)
.

We define the asymptotic variance of the non diverging integrated volatility

n−2ÎV as

AVar(n−2ÎV) =
∇g1(x)⊤Σ∇g1(x)

n2
,

where g1(x) =
(

3nMean
2c(x2−x3)

)(
2x3 − 1

2x2
)
. Moreover, we define the asymptotic

variance estimator of ÎV as

ÂVar(ÎV) = ∇g2(x̂)⊤Σ̂∇g2(x̂),

where g2(x) =
(

3M̂ean
2∆2

n(x2−x3)

)(
2x3 − 1

2x2
)
. The following corollary gives the CLT

of the integrated volatility of the baseline.

Corollary 5.3. Under Assumptions 1 and 2, we have

∆
− 1

2
n n−2

(
ÎV − IV

)√
AVar(n−2ÎV)

L−s−−−→ N (0, 1).
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Moreover, we show the normalized CLT with feasible variance, i.e.,

∆
− 1

2
n n−2

(
ÎV − IV

)√
ÂVar(ÎV)

L−s−−−→ N (0, 1). (5.10)

5.4. Test for the absence of a Hawkes component

In this part, we develop a test for the absence of a Hawkes component. We con-

sider a Wald test, which is based on the estimation of the L1 norm of the kernel.

Two related papers are also providing similar tests, but our strategy is different.

Dachian and Kutoyants (2006) propose a test for the absence of a Hawkes com-

ponent based on parametric and non parametric composite alternatives under

large T asymptotics. Their framework is simpler since they consider stationary

Poisson process with known intensity under the null hypothesis. Türkmen and

Cemgil (2018) give a Bayesian approach based on marginal likelihood estima-

tion. They restrict to an homogeneous Poisson process under the null hypothesis,

and a Hawkes process with exponential kernel under the alternative hypothesis.

We define respectively the null hypothesis and the alternative hypothesis as

H0 : {absence of a Hawkes component, i.e., ∥ϕ∥ = 0},

H1 : {presence of a Hawkes component, i.e., ∥ϕ∥ > 0}.

Let our test statistic be

S =
∆−1

n ∥̂ϕ∥21
ÂVar(∥̂ϕ∥1)

. (5.11)

We define q(u) as the quantile function of the chi-squared distribution with one

degree of freedom. The following corollary gives the limit theory of the test for

the absence of a Hawkes component.

Corollary 5.4. We assume that Assumptions 1 and 2 hold. Then, the test

statistic S converges in distribution to a chi-squared random variable with one

degree of freedom under the null hypothesis H0 and is consistent under the al-

ternative hypothesis H1, i.e., for any 0 < α < 1, we have

P(S > q(1− α) | H0) → α,

P(S > q(1− α) | H1) → 1.
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5.5. Test for baseline constancy

Finally, we introduce a test for baseline constancy. To the best of our knowledge,

there is no related test. We consider a test based on the Hausman principle

(Hausman (1978)), which is based on the difference between two estimators,

one that is efficient but not robust to the deviation being tested, and one that

is robust but not as efficient (Aı̈t-Sahalia and Xiu (2019), Clinet and Potiron

(2019)).

We define respectively the null hypothesis and the alternative hypothesis as

H ′
0 : {The baseline µt is constant on [0, T ]},

H ′
1 : {The baseline µt is not constant on [0, T ]}.

We first define a variance estimator in case of baseline constancy as

V̂ar =

⌊T/∆n⌋∑
i=1

(
λ̂i −

M̂ean

T

)2

. (5.12)

Following Hardiman and Bouchaud (2014), we then estimate the L1 norm of

the kernel in case of baseline constancy as

∥̂ϕ∥H1 = 1−

√√√√ M̂ean

∆2
nV̂ar

. (5.13)

We also define ϑ̂ as ϑ̂ = V̂ar1/(2T ), and Σ̂
′
as

Σ̂
′
=


ϑ̂T 0 0 0

0 2ϑ̂2T 4ϑ̂2T ϑ̂2T

0 4ϑ̂2T 12ϑ̂2T 3
2 ϑ̂

2T

0 ϑ̂2T 3
2 ϑ̂

2T 3
2 ϑ̂

2T

 .
Finally, we define the asymptotic variance of ∥̂ϕ∥1 − ∥̂ϕ∥H1 as

ÂVar(∥̂ϕ∥1 − ∥̂ϕ∥H1 ) =
(
∇f(x̂1)−∇g(x̂2)

)⊤
Σ̂

′
n

(
∇f(x̂1)−∇g(x̂2)

)
.

Here, we have that f(x) = 1 −
√

3
2

M̂ean
∆2

n(x3−x4)
, x̂1 =

[
0, 0, V̂ar1, V̂ar2

]⊤
,

g(x) = 1−
√

M̂ean
∆2

nx2
and x̂2 =

[
0, V̂ar, 0, 0

]⊤
.

Let our test statistic be

S′ =
∆−1

n (∥̂ϕ∥1 − ∥̂ϕ∥H1 )2

ÂVar(∥̂ϕ∥1 − ∥̂ϕ∥H1 )
.

We first give the following CLT.
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Proposition 5.1. Under Assumptions 1 and 2 and H ′
0, we have

(Σ̂
′
n)

− 1
2


∆−1

n

(
M̂ean−Mean

)
∆

− 1
2

n

(
V̂ar−Var

)
∆

− 1
2

n

(
V̂ar1 −Var1

)
∆

− 1
2

n

(
V̂ar2 −Var2

)

 L−s−−−→ MN (0, I) . (5.14)

It implies that

∆
− 1

2
n (∥̂ϕ∥1 − ∥̂ϕ∥H1 )√
ÂVar(∥̂ϕ∥1 − ∥̂ϕ∥H1 )

L−s−−−→ N (0, 1). (5.15)

The following corollary gives the limit theory of the test for baseline con-

stancy.

Corollary 5.5. We assume that Assumptions 1 and 2 hold. Then, the test

statistic S′ converges in distribution to a chi-squared random variable with one

degree of freedom under the null hypothesis H ′
0 and is consistent under the al-

ternative hypothesis H ′
1, i.e., for any 0 < α < 1, we have

P(S′ > q(1− α) | H ′
0) → α,

P(S′ > q(1− α) | H ′
1) → 1.

6. Simulation studies

In this section, we conduct simulation studies to document how the estimators

and tests from Section 5 behave.

6.1. Simulation design

We consider the following simulation design to be as close as possible from the

data application in finance. We set T = 1, i.e., 6.5 hour long day of trading. The

order of the observation number n varies from 50,000 to 1,000,000. With these

realistic values, the simulation design allows for both less traded and highly

traded stocks. The number of replications is equal to 1,000. We use the python

package tick (Bacry et al., 2017) for the generation of the point process.

We define the intensity process as

λt = n(1− ∥ϕ∥1)
(
µC
t + µB

t

)
+

∫ t

0

nϕ(n(t− s))dNs. (6.1)
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Here, the component of the baseline µC
t satisfies a square root process (SRP)

dµC
t = 30(bt − µC

t )dt+ 3
√
µC
t dWt. (6.2)

Here, bt is a solution of the ordinary differential drt = 30(bt− rt)dt with inverse

J-shape rt defined as

rt = 20

(
(t− 0.53)4 +

1

24

)
,

and µC
0 = r0. We have that the drift term in Eq. (6.2) ensures mean reversion

of µC
t to the process bt. Moreover, bt pushes µC

t to follow the inverse J-shape

nonrandom term rt. In Eq. (6.2), the diffusion term
√
µC
t dWt is the random

fluctuation. The Feller condition (Feller, 1951) is satisfied with 30× bt ≥ 32 for

any t ∈ [0, T ], thus µC
t is positive.

In Eq. (6.2), µB
t are the intensity bursts (Rambaldi, Filimonov and Lillo

(2018)). They are defined as a sudden occurrence of a big number of exogenous

points for a short period of time, i.e., around one second. The arrival time of

bursts zi is sampled from an homogeneous Poisson process with rate 2/T . The

size of the bursts Zi are drawn from max(N (200n, (50n)2), 50n). The intensity

bursts have the form

µB
t =

∑
zi≤t

Zi1{(t−zi)∈[0,1/(3600×6.5)]}. (6.3)

The parameter values are taken from our empirical application and the results

from Rambaldi, Filimonov and Lillo (2018) (p. 6), where the authors report an

average number of bursts between 1.95–3.25 for a 6.5-hour period.

In Eq. (6.1), we consider an exponential kernel defined as ϕ(t) = 1.6e−2t and

a power kernel defined as ϕ(t) = 1.6(1 + t)−3. With these kernel values, the L1

norm is equal to ∥ϕ∥1 = 0.8, which is the average value that we obtain in our

own empirical application and in the results of Filimonov and Sornette (2012).

Finally, we set the truncation level as

ϖ = ∆
− 1

4
n

√√√√ 1

⌊T/∆n⌋

⌊T/∆n⌋∑
i=1

(∆iλ̂)2.

We consider the following variety of models to disentangle the effects. First,

we set Model 1 as a null kernel and a constant baseline, i.e., λt = n. Second, we

set Model 2 as a null kernel and a J-shape baseline, i.e., λt = 20
(
(t − 0.53)4 +

1
24

)
n. Third, we set Model 3 as a null kernel and a J-shape + SRP + burst

baseline, i.e., λt = n(µC
t + µB

t ). Then, we set Model 4 as an exponential kernel
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and a constant baseline, i.e., λt = n+
∫ t

0
nϕ(n(t−s))dNs. We also set Model 5 as

an exponential kernel and a J-shape baseline, i.e., λt = nµt+
∫ t

0
nϕ(n(t−s))dNs

where µt = 20(1 − ∥ϕ∥1)
(
(t − 0.53)4 + 1

24

)
. We set Model 6 as an exponential

kernel and a J-shape + SRP + burst baseline, i.e., λt = n(1−∥ϕ∥1)(µC
t +µB

t )+∫ t

0
nϕ(n(t− s))dNs. We set Model 7 as a power kernel, and a constant baseline

as λt = n+
∫ t

0
nϕ(n(t−s))dNs. We set Model 8 as a Power kernel and a J-shape

baseline, i.e., λt = nµt +
∫ t

0
nϕ(n(t − s))dNs, µt = 20(1 − ∥ϕ∥1)

(
(t − 0.53)4 +

1
24

)
. Finally, we set Model 9 as a power kernel and a J-shape + SRP + burst

baseline, i.e., λt = n(1 − ∥ϕ∥1)(µC
t + µB

t ) +
∫ t

0
nϕ(n(t − s))dNs. These models

are summarized in Table 1.

Table 1
Summary of models.

Baseline Model (µt)

Kernel Constant J-shape J-shape + SRP + burst

Null Model 1 Model 2 Model 3
Exponential Model 4 Model 5 Model 6
Power Model 7 Model 8 Model 9

In general, the intensity bursts µB follow Eq. (6.3), but in the case of power

kernel, we first generate points without the burst and then add points whose

intensity follows (1 − ∥ϕ∥1)−1µB. It is due to the implemented function in the

package tick taking over a day to generate points when there is a burst. How-

ever, it does not give any significant differences in the results.

Figure 1 provides a comparison between simulated intensity with Model 9

(left panel) and intensity based on AAPL (Apple) data on April 1st 2016 (right

panel). The intensity is obtained from one-minute intervals. The simulated pro-

cess captures the U-shaped pattern and intensity burst well; it also exhibits

some random fluctuation of the baseline intensity. These patterns can also be

seen in the data that justify our simulation design being realistic.

6.2. Asymptotic approximation

Table 2 and Figure 2 report the summary statistics and the histogram for the

integrated baseline with Models 1-3. The order of the observation number n

is 150,000 and 1,000,000. The absolute value of the mean ranges from 1% to

15%, with an average of 5%. It has an average of 3% for the statistics with

unfeasible variance, and an average of 7% for the statistics with feasible variance.

Overall, the mean is adequate, especially when the variance is feasible and when

n increases. The variance ranges from 101% to 107%, with an average of 104%.
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Fig 1: Comparison between simulated intensity with Model 9 (left panel) and
intensity based on AAPL data on April 1st 2016 (right panel).

It has an average of 102% for the statistics with unfeasible variance, and an

average of 106% for the statistics with feasible variance. Overall, the variance is

close to unity.

Table 2
Summary statistics for the integrated intensity with Models 1-3. The order of the

observation number n is 150,000 and 1,000,000, and the number of replications is 1,000.

n 150,000 1,000,000

Variance Unfeasible Feasible Unfeasible Feasible

Model Mean Variance Mean Variance Mean Variance Mean Variance

Model 1 -0.0117 1.0398 -0.0215 1.0665 0.0318 1.0086 0.0842 1.0192
Model 2 0.0329 1.0183 0.0640 1.0406 -0.0176 1.0331 -0.0297 1.0575
Model 3 -0.0679 1.0435 -0.1541 1.0625 -0.0360 1.0105 0.0723 1.0119

Table 3 and Figure 3 report the summary statistics and the histogram for

the integrated baseline with Models 4-9. The order of the observation number

n is 150,000 and 1,000,000. The absolute value of the mean ranges from 2%

to 28%, with an average of 10%. It has an average of 5% for the statistics

with unfeasible variance, and an average of 15% for the statistics with feasible

variance. Overall, the statistics are slightly biased, especially when the variance

is unfeasible. However, the bias gets smaller when n increases. The variance

ranges from 98% to 109%, with an average of 103%. It has an average of 101% for

the statistics with unfeasible variance, and an average of 105% for the statistics

with feasible variance. Overall, the variance is close to unity.

Table 4 and Figure 4 report the summary statistics and the histogram for the

integrated volatility of the baseline with Models 1-9. The order of the observation

number n is 150,000 and 1,000,000. The absolute value of the mean ranges
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Fig 2: Histogram of the normalized CLT with feasible variance (5.3) for the
integrated intensity with Models 1-3. The order of the observation number n is
150,000, and the number of replications is 1,000.

Table 3
Summary statistics for the integrated baseline with Models 4-9. The order of the observation

number is n=150,000 or 1,000,000, and the number of replications is 1,000.

n 150,000 1,000,000

Variance Unfeasible Feasible Unfeasible Feasible

Model Mean Variance Mean Variance Mean Variance Mean Variance

Model 4 0.0664 1.0085 0.1582 1.0142 -0.0281 1.0558 0.0579 1.0753
Model 5 0.0589 1.0440 0.1302 1.0869 0.0638 1.0108 0.1141 1.0195
Model 6 0.0401 1.0186 0.0874 1.0421 0.0183 1.0048 0.0400 1.0098
Model 7 0.1612 0.9826 0.2838 0.9927 0.0593 1.0046 0.1215 1.0089
Model 8 0.1189 1.0176 0.2644 1.0179 0.0657 1.0113 0.1173 1.0220
Model 9 0.1032 1.0563 0.2056 1.0866 0.0332 1.0394 0.8122 1.0723
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Fig 3: Histogram of the normalized CLT with feasible variance (5.8) for the
integrated baseline with Models 4-9. The order of the observation number n is
150,000, and the number of replications is 1,000.
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from 1% to 49%, with an average of 11%. It has an average of 7% for the

statistics with unfeasible variance, and an average of 14% for the statistics with

feasible variance. Overall, the statistics are biased, especially when the variance

is unfeasible. However, the bias is smaller when n increases. The variance ranges

from 98% to 120%, with an average of 110%. It has an average of 107% for the

statistics with unfeasible variance, and an average of 114% for the statistics with

feasible variance. Overall, the variance is reasonably close to unity.

Table 4
Summary statistics for the integrated volatility of the baseline with Models 1-9. The order of
the observation number n is 150,000 and 1,000,000, and the number of replications is 1,000.

n 150,000 1,000,000

Variance Unfeasible Feasible Unfeasible Feasible

Model Mean Variance Mean Variance Mean Variance Mean Variance

Model 1 -0.0292 1.0393 -0.0620 1.0634 0.0488 1.0020 0.0985 1.0035
Model 2 0.0256 1.0447 0.0369 1.0617 -0.0276 1.0449 -0.0447 1.0563
Model 3 -0.1596 1.0428 -0.4900 1.0765 -0.1204 0.9850 -0.2589 0.9772
Model 4 -0.0258 1.0810 0.0004 1.1992 0.0213 1.0859 0.0302 1.1512
Model 5 0.0189 1.1989 -0.0276 1.4319 0.0344 1.0356 0.0507 1.0591
Model 6 -0.1904 1.1476 -0.3378 1.3072 -0.1422 1.1550 -0.2834 1.1390
Model 7 0.0587 1.1671 0.0807 1.2958 0.0326 1.0954 0.0540 1.1422
Model 8 0.0183 1.0567 0.0315 1.0900 0.0055 1.0328 0.0172 1.0542
Model 9 -0.1573 1.2021 -0.2987 1.3761 -0.0871 1.0992 -0.1460 1.2037

6.3. Hypothesis testing

Table 5 reports the percentage of rejections at the 5% level of the null hypothesis

for the two tests with Models 1-9. The order of the observation number n is

50,000, 150,000 and 1,000,000. The size ranges from 4.2% to 6.4%, with an

average of 5.4%. It has an average of 5.8% with the test for the absence of a

Hawkes component, and an average of 5.0% with the test for baseline constancy.

Overall, the test for the absence of a Hawkes component is slightly oversized

while the size of the test for baseline constancy is adequate. The power is always

equal to 100%, and thus is also adequate.

Table 6 reports the percentage of rejections at the 10% level of the null

hypothesis for the two tests with Models 1-9. The order of the observation

number n is 50,000, 150,000 and 1,000,000. The size ranges from 9.3% to 12.2%,

with an average of 10.6%. It has an average of 11.0% with the test for the

absence of a Hawkes component, and an average of 10.3% with the test for

baseline constancy. Overall, the test for the absence of a Hawkes component is

slightly oversized while the size of the test for baseline constancy is adequate.
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Fig 4: Histogram of the normalized CLT with feasible variance (5.10) for the
integrated volatility of the baseline with Models 1-9. The order of the observation
number n is 150,000, and the number of replications is 1,000.
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Table 5
Percentage of rejections at the 5% level of the null hypothesis for the two tests with Models

1-9. The order of the observation number n is 50,000, 150,000 and 1,000,000, and the
number of replications is 1,000.

Test for the absence of a Hawkes component

Size Power

n 1 2 3 4 5 6 7 8 9

50,000 5.6 5.3 6.4 100 100 100 100 100 99.9
150,000 6.0 6.0 5.9 100 100 100 100 100 100

1,000,000 5.5 6.2 5.3 100 100 100 100 100 100

Test for baseline constancy

Size Power

n 1 4 7 2 3 5 6 8 9

50,000 4.2 4.7 4.9 100 1.000 100 100 100 99.9
150,000 5.4 5.2 4.3 100 100 100 100 100 100

1,000,000 5.2 6.0 4.6 100 100 100 100 100 100

The power is always equal to 100%, and thus is also adequate.

Table 6
Percentage of rejections at the 10% level of the null hypothesis for the two tests with Models

1-9. The order of the observation number n is 50,000, 150,000 and 1,000,000, and the
number of replications is 1,000.

Test for the absence of a Hawkes component

Size Power

n 1 2 3 4 5 6 7 8 9

50,000 10.3 11.5 11.1 100 100 100 100 100 99.9
150,000 12.2 11.6 11.3 100 100 100 100 100 100

1,000,000 10.2 10.9 9.7 100 100 100 100 100 100

Test for baseline constancy

Size Power

n 1 4 7 2 3 5 6 8 9

50,000 9.3 9.9 11.5 100 100 100 99.9 100 99.9
150,000 10.1 10.0 9.5 100 100 100 100 1.000 100

1,000,000 10.0 11.7 10.5 100 100 100 100 100 100

7. Empirical application

Our empirical application focuses on the S&P500 E-mini futures. They are liquid

contracts traded on the Chicago Mercantile Exchange. We obtain the mid-quote

price, i.e., the average price between best bid and ask prices, and time stamps

from the consolidated trade history in the transaction Tickdatamarket database.
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The data set covers the period from January 2020 to December 2021. All index

quotes are considered during normal trading hours.

In Figure 5, we plot the estimated intensity for the whole sample by averaging

the intraday estimates λ̂i across days, each day with a normalized time of [0,1].

The intensity reported shows the U-shaped pattern captured by µC
t and the

intensity bursts captured by µB
t in our simulation design based on (6.1). The

most pronounced bursts occur at the beginning of the trading session and just

before closing.

Now, we turn to testing the hypotheses formulated in Sections 5.4 and 5.5,

namely absence of a Hawkes component and baseline constancy. For each day

in the sample, we perform the tests following Corollaries 5.4 and 5.5. Figure 6

shows corresponding test statistics revealing rejection of the null hypothesis in

both cases. Namely, we confirm the presence of Hawkes component (blue line)

and the varying baseline (orange line) for all days.
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Fig 5: Estimated intensity of the S&P500 E-mini futures quotes. The number
of the mid-quote price changes in millions per minute is shown.

To verify that our test results are not distorted due to a multiple statistical

inference problem, we implement the sequential Bonferroni procedure of Holm

(1979) for all p-values. The adjusted p-values computed at the 1% level provide

identical conclusions about all hypotheses, confirming the statistical robustness

of our results. Another robustness check of our test results is conducted following

Bajgrowicz, Scaillet and Treccani (2016) and the results are in agreement with

the Bonferroni corrected tests.

In summary, the empirical findings are in favor of Hawkes processes with

time-varying baseline.
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Fig 6: Test statistics for the null hypothesis in the two tests from Sections 5.4
and 5.5 with the 5% critical value.

8. Conclusion

In this paper, we have considered Hawkes processes with Itô semimartingale

baseline. This time-varying baseline can accommodate for time-variation, stochas-

ticity, and bursts. We have derived CLT for empirical average and variance of

local Poisson estimates. For the applications, we have studied the integrated

intensity, the integrated baseline, and the integrated volatility of the baseline.

We have also developed a test for the absence of a Hawkes component and a

test for baseline constancy. The simulation study corroborates the asymptotic

theory. The empirical application shows that the absence of Hawkes component

and baseline constancy is always rejected.

The code is available at https://github.com/SeunghyeonTonyYu/TSRV2Hawkes.
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Appendix A: Proofs

This appendix provides the detailed proofs for the theoretical results, namely

Proposition 4.1, Theorem 4.1, Proposition 5.1 and the five corollaries of Sec-

tion 5. They rely on theory developed in Bacry et al. (2013a), Barndorff-Nielsen

et al. (2006), Brémaud and Massoulié (1996), Clinet and Potiron (2018) , Gir-

sanov (1960), Jacod and Shiryaev (2013), Jacod and Protter (2011), Novikov

(1972), and Todorov and Tauchen (2011).

A.1. Notations and definitions

To start with, we introduce some notations and definitions. In what follows,

for any i = 1, . . . ,M , we use Ei−1, Vi−1 and Covi−1 in place of E[· | F(i−1)∆n
],

V[· | F(i−1)∆n
] and Cov[· | F(i−1)∆n

]. We also make use of Xi instead of Xi∆n

and ∆Xi instead of Xi −Xi−1. We define Xi as the average of Xt on the i-th

block, i.e., Xi = ∆−1
n

∫ i∆n

(i−1)∆n
Xt dt. We denote the Lp-norm of X as ∥X∥p.

We denote the big O in probability and the big O in Lp-norm by OP and OLp .

They are defined through Xn = OP(αn) ⇐⇒ Xn

αn
is stochastically bounded

and Xn = OLp(αn) ⇐⇒ ∥Xn∥p = O(αn). We denote a uniform big O by

O. It is defined through f(n, t) = O
(
g(n, t)

)
⇐⇒ |f(n, t)| ≤ Cg(n, t), for all

n ∈ N, t ∈ [0, T ], and some C ∈ R+ which does not depend on n and t. If g has

no dependency on t, then f(n, t) = O
(
g(n)

)
implies uniformly boundedness by

g(n), i.e., supt∈[0,T ] |f(n, t)| ≤ Cg(n) for all n ∈ N, so we can most of the time

freely exchange the order of the limit and the integral/sum. We denote the strict

big O in Lk-norm by OLk . It is defined through f(n, i) = OLk

(
g(n, i)

)
⇐⇒

E
[(
f(n, i)

)k] 1
k = O

(
g(n, i)

)
. No dependency of g on i means that f(n, i) can be

bounded uniformly in i with g. In the proofs, f, g, and h are temporary functions

which may vary, and C denotes a generic constant that does not depend on n

and may differ.

Let us begin with the proof of the existence of Hawkes processes with a

time-varying baseline driven by an Itô semimartingale. It extends the proof

of Theorem 4 (pp. 1574-1575) in Brémaud and Massoulié (1996) to the time-

varying baseline case and the proof of Theorem 5.1 (pp. 3-4) in the supplement

of Clinet and Potiron (2018) in which the kernel is exponential to the general

kernel case.
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A.2. Proof of Proposition 4.1

The strategy of the proof consists in defining a suitable sequence of simple point

processes and intensity (Nk
t , λ

k
t )k≥0 such that their limit defined as (Nt, λt) =

limk→∞(Nk
t , λ

k
t ) exists and Nt admits λt as Ft-intensity given by Eq. (2.1). We

first define for t ∈ [0, T ] λ0(t) = µt and N0
t the simple point process counting

the points of N below the curve t → λ0t as N0
t =

∫
[0,t]×R 1[0,λ0

s]
(x)N(ds × dx).

We then define recursively the sequence of (Nk
t , λ

k
t )k≥1 as

λk+1
t = µt +

∫ t−

0

ϕ(t− s)dNk
s

Nk+1
t =

∫
[0,t]×R

1[0,λk+1
s ](x)N(ds× dx). (A.1)

First, we have that λkt is a.s. positive as an application of Assumption 1(a) so

that λkt is a well-defined intensity. Then, an extension to the time-varying case of

the arguments from Lemma 3 and Example 4 (pp. 1571-1572) in Brémaud and

Massoulié (1996) yields that Nk
t is Ft-adapted, λ

k
t is Ft-predictable and an Ft-

intensity ofNk
t . Moreover, nonnegative ϕ implies that (Nk

t , λ
k
t ) is componentwise

increasing with k and thus converges to some limit (Nt, λt) a.s. for any t ∈ [0, T ].

We now introduce the sequence of processes ρkt defined as ρkt = E[λkt −λk−1
t |F̃T ].

Then ρk+1
t = E

[ ∫ t

0
ϕ(t− s)(λks −λk−1

s )ds
∣∣∣F̃T

]
=

∫ t

0
ϕ(t− s)ρksds, where the first

equality is obtained by Lemma 10.1 (p. 2) in the supplement of Clinet and

Potiron (2018) when G = F̃T along with Eq. (A.1), and the second equality by

Tonelli’s theorem and the definition of ρkt . If we define Φk
t as Φk

t =
∫ t

0
ρksds a.s.,

we have by another application of Tonelli’s theorem that

Φk+1
t =

∫ t

0

(∫ t−s

0

ϕ(u)du
)
ρns ds. (A.2)

By definition of the L1 norm, we deduce that
∫ t−s

0
ϕ(u)du ≤ ∥ϕ∥1. Thus, an

application of the definition of Φk
t along with Eq. (A.2) implies that Φk+1

t ≤
∥ϕ∥1Φk

t . Then, since Assumption 1(d) states that ∥ϕ∥1 < 1, we can deduce

that F : Φk
t → Φk+1

t is a.s. a contraction function. It turns out that the limit

of the telescopic series (
∑k

l=0 Φ
l
t)k≥1 exists by arguments used in Banach fixed-

point theorem. Working with the telescopic series and applying the monotone

convergence theorem to the series yields

E
[ ∫ t

0

λsds
∣∣∣F̃T

]
≤

∫ t

0

µsds+ ∥ϕ∥1E
[ ∫ t

0

λsds
∣∣∣F̃T

]
. (A.3)

By rearranging the terms in Eq. (A.3), we get that

E
[ ∫ t

0

λsds
∣∣∣F̃T

]
≤ (1− ∥ϕ∥1)−1

∫ t

0

µsds. (A.4)
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Given Assumption 1(b), the expression in the left side of Eq. (A.4) is finite a.s..

Given that its conditional expectation is finite,
∫ t

0
λsds is finite a.s.. Moreover,

λt is Ft-predictable as a limit of such processes. Nt counts the points of N under

the curve t 7→ λt by an application of the monotone convergence theorem. Nt

therefore admits λt as an Ft-intensity by an extension to the time-varying case

of the arguments from Lemma 3 (p. 1571) in Brémaud and Massoulié (1996). It

implies that Nt is finite a.s.. Finally, it remains to show that λt is of the form

Eq. (2.1). The monotonicity properties of Nk
t and λkt ensure that, for all k ≥ 0

and all t ∈ [0, T ], λkt ≤ µt+
∫ t

0
ϕ(t−s) dNs and λt ≥ µt+

∫ t

0
ϕ(t−s) dNk

s , which

gives Eq. (2.1) by taking the limit k → +∞ in both inequalities.

A.3. Preliminary results

Let us define ϕn(t) as ϕn(t) = nϕ(nt) and the Laplace transform of the kernel

as ϕ̂(s) =
∫∞
0
e−stϕ(t) dt. For f and g two integrable functions, we define the

convolution of f and g as f ∗gt =
∫∞
−∞ f(t−s)g(s) ds. For an integrable function

f and a stochastic process X, we define the convolution of f and X as f ∗dXt :=∫∞
−∞ f(t− s) dXs. Let ψ : R+ → R+ be the resolvent kernel of ϕ which satisfies

ϕ + ϕ ∗ ψ = ψ, i.e., ψ(t) = ϕ(t) + ϕ ∗ ψ(t). Similarly, let ψn be the resolvent

kernel of ϕn, i.e., ϕn + ϕn ∗ ψn = ψn. Finally, we define the integral of ψn as

Ψn(t) =
∫ t

0
ψn(s) ds and the integral between (i−1)∆n and i∆n as ∆iΨ

n(−t) =∫ i∆n

(i−1)∆n
ψn(s− t) ds.

The first lemma gives the asymptotic properties of the resolvent kernel, which

can be expressed as a Laplace transform of the kernel.

Lemma A.1. Under Assumptions 1 and 2(a), we have

ψ(t) =

≥ 0 for any t ≥ 0

0 for any t < 0
, (A.5)

ψn(t) = nψ(nt), (A.6)

Ψn(t) = ψ̂(0) +O

(
1 ∧ 1

nt

)
, (A.7)

∆iΨ
n(−t) = O

(
1 ∧ 1

n((i− 1)∆n − t)

)
, (A.8)

Proof of Lemma A.1. Since ∥ϕ∥1 < 1 by Assumption 1(d), the transform T : f 7→
(µ+ϕ∗f) is a contraction map. Thus, we can apply Banach fixed-point theorem

to get a fixed-point ψ = f∞ with recursion fn = T (fn−1) and we obtain

fn = T (fn−1) = µ+ ϕ ∗ fn−1 = µ+ ϕ ∗ (Tfn−2) = µ+ ϕ ∗ (µ+ ϕ ∗ fn−2)
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= . . . = µ+ ϕ ∗ µ+ ϕ∗2 ∗ µ+ · · ·+ ϕ∗(n−2) ∗ µ+ ϕ∗(n−1) ∗ f1.

For the initial value, we can choose f1 = 0. Then, for all n > 1, fn(t) is non-

negative and fn(t) = 0, for t < 0, since the kernel ϕ is nonnegative and equal

to zero for t < 0. So we have Eq. (A.5). By the scaling property of the Laplace

transform, we have that ϕ̂n(s) = ϕ̂(s/n), and hence Eq. (A.6). For Eq. (A.7),

since ψ and ϕ are nonnegative, we have

ψ̂(0)− ψ̂

(
1

nt

)
=

∫ ∞

0

(
1− e−

s
nt

)
ψ(s) ds ≥

∫ ∞

nt

(
1− e−

s
nt

)
ψ(s) ds

≥ (1− e−1)

∫ ∞

nt

ψ(s) ds. (A.9)

From Assumption 2(a), we have that ϕ̂′(0) =
∫∞
0
tϕ(t)dt <∞ and then we can

apply Taylor’s theorem for ψ̂(s) = ϕ̂(s)/(1− ϕ̂(s)) with the Peano’s form of the

remainder ψ̂(s) = ψ̂(0) + ψ̂′(0)s + h(s)s, where lims→0 h(s) = 0. The function

ψ̂ is decreasing such that ψ̂(s) ≥ ψ̂(t) for s < t, and ψ̂(0) <∞, so we have

0 ≤ ψ̂(0)− ψ̂

(
1

nt

)
= −

(
ψ̂′(0) + h

(
1

nt

))
1

nt

≤


(
|ψ̂′(0)|+

∣∣h( 1
nt

)∣∣) 1
nt if nt ≥ 1,

ψ̂(0) if nt < 1.

Since supx∈[0,1] |h(x)| <∞, we obtain∣∣∣∣ψ̂(0)− ψ̂

(
1

nt

)∣∣∣∣ ≤ C

(
1 ∧ 1

nt

)
. (A.10)

It implies that

Ψn(t) =

∫ t

0

ψn(s) ds =

∫ t

0

nψ(ns) ds =

∫ nt

0

ψ(s) ds

= ψ̂(0)−
∫ ∞

nt

ψ(s) ds ≤ ψ̂(0) +
1

1− e−1

(
ψ̂(0)− ψ̂

(
1

nt

))
= ψ̂(0) + C

(
1 ∧ 1

nt

)
,

for sufficiently large n, where we have used successively Eq. (A.6), the change

of variable ns → s, Eq. (A.9), and Eq. (A.10). With the same arguments, we

can show the result for Eq. (A.8).

For any t ∈ [0, T ], we define the sum of the baseline and the convolution

of the resolvent kernel and baseline as νnt = µt + ψn ∗ µt and Ft-martingale
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of compensated Nt as Mt = Nt −
∫ t

0
λudu. We also define the limit of νnt as

νt = (1 + ψ̂(0))µt.

The following lemma exhibits an Ft-martingale representation of the Ft-

intensity λt. It is based on the convolution of the resolvent kernel and the

martingale. It extends Lemma 3 in Bacry et al. (2013a), which considers an

invariant baseline and large T asymptotics, to the time-varying baseline and

in-fill asymptotics case.

Lemma A.2. Under Assumptions 1 and 2(a), we have for any t ∈ [0, T ]

λt = nνnt + ψn ∗ dMt. (A.11)

Moreover, we have

νnt − νt = OLk(1/
√
n). (A.12)

Proof of Lemma A.2. By Lemma 3 in Bacry et al. (2013a), the solution of the

equation f(t) = h(t) +ϕn ∗ f(t) with measurable locally bounded function ht is

f(t) = h(t) + ψn ∗ h(t).

In our case, we have to solve λt which satisfies

λt = nµt + ϕn ∗ dNt = nµt + ϕn ∗ (λt + dMt) =
(
nµt + ϕn ∗ dMt

)
+ ϕn ∗ λt.

Applying Lemma 3 in Bacry et al. (2013a) with the function h(t) defined as

h(t) = nµt + ϕn ∗ dMt, we have

λt = h(t) + ϕn ∗ λt
= h(t) + ψn ∗ h(t)

= nµt + ϕn ∗ dMt + ψn ∗ (nµt + ϕn ∗ dMt)

= n(µt + ψn ∗ µt) + (ϕn + ψn ∗ ϕn) ∗ dMt

= n(µt + ψn ∗ µt) + ψn ∗ dMt.

Thus, we can obtain Eq. (A.11). We show now Eq. (A.12). Since ψn ∗ µt =∫ t

−∞ ψn(t − s)µs ds =
∫∞
0
ψn(s)µt−s ds =

∫∞
0
ψ(s)µt− s

n
ds by Eq. (A.6) from

Lemma A.1 along with Assumptions 1 and 2(a), we obtain that

ψn ∗ µt − ψ̂(0)µt =

∫ ∞

0

ψ(s)µt− s
n
ds− ψ̂(0)µt

=

∫ ∞

0

ψ(s)
(
µt− s

n
− µt

)
ds. (A.13)
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Then the local boundedness of µt gives∣∣∣ψ(s)(µt− s
n
− µt

)∣∣∣ ≤ 2ψ(s) sup
0≤s≤t

µs < Cψ(s),

so we can apply the dominated convergence theorem which yields

lim
n→∞

∫ ∞

0

ψ(s)
(
µt− s

n
− µt

)
ds =

∫ ∞

0

ψ(s) lim
n→∞

(
µt− s

n
− µt

)
ds,

for all t ∈ [0, T ]. An extension of these arguments yields Eq. (A.12).

The following lemma extends Lemma 10.3 from Clinet and Potiron (2018)

(pp. 4-6 in the supplement) in which the kernel is exponential.

Lemma A.3. Under Assumption 1, for any k > 0, there exists C such that

supt Eλkt ≤ Cnk, for any t ∈ [0, T ].

Proof of Lemma A.3. We can use the same arguments as in the proof of Lemma

10.3 in Clinet and Potiron (2018) along with Assumption 1(d).

For any i = 1, . . . ,M , we define the estimator of rescaled spot intensity

as ν̂
n

i = λ̂i

n . We also define the rescaled increment of the martingale as εi =
1

n∆n

∫ i∆n

(i−1)∆n
dMt and ϵi as ϵi =

1
n∆n

{ ∫ (i−1)∆n

0
∆iΨ

n(−t) dMt+
∫ i∆n

(i−1)∆n
Ψn(i∆n−

t) dMt

}
. Finally, we define the sum of εi and ϵi as ui = εi + ϵi.

The following lemma is a decomposition of the estimation error ui as the sum

of the error originating from the time-varying baseline εi and another related

to the Hawkes structure ϵi.

Lemma A.4. Under Assumptions 1 and 2(a), we have for any i = 1, . . . ,M ,

that

ν̂
n

i = νni + ui. (A.14)

Proof of Lemma A.4. It is obtained by Lemma A.2 along with Fubini’s theorem,

Assumptions 1 and 2(a).

For any t ∈ [0, T ], we define ϑnt as ϑnt = (1 + ψ̂(0))2νnt . The following lemma

provides moments of ui.

Lemma A.5. Under Assumptions 1 and 2(a), for any k ∈ N∗, we have

E[|ui|k] ≤
C

(n∆n)k/2
,

Ei−1[ui | Fµ] = OLk

(
log n

n∆n

)
,
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Ei−1[uiuj | Fµ] = OLk

(
log n

(n∆n)2

)
, for any i < j,

Ei−1[u
2
i | Fµ] =

1

n∆n
ϑni +OLk

(
log n

(n∆n)2

)
,

Ei−1[u
3
i | Fµ] =

(1 + 3ψ̂(0))(1 + ψ̂(0))

(n∆n)2
ϑni +OLk

(
(log n)2

(n∆n)3

)
,

Ei−1[u
4
i | Fµ] =

3

(n∆n)2
(ϑni )

2 +OLk

(
1

(n∆n)3
+

(log n)3

(n∆n)4

)
. (A.15)

Proof of Lemma A.5. Without loss of generality and for convenience of nota-

tion, we assume that µt and thus νt are nonrandom throughout this proof. We

first calculate the moments of ui. For the first moment, it is sufficient to consider

ϵi because Ei−1[εi] = 0. We have that Ei−1[ϵi] = OLk

(
logn
n∆n

)
holds for k = 1

and k = 2 since Ei−1[ϵi] = (n∆n)
−1

∫ (i−1)∆n

0
∆iΨ

n(−t) dMt by Lemma A.4, Itô

isometry for point processes, Lemma A.3 along with Assumptions 1 and 2(a).

We thus obtain that E
[(
Ei−1[ϵi]

)2] ≤ Cn
(n∆n)2

(∫ (i−1)∆n−n−1

0
1

n((i−1)∆n−t)dt +∫ (i−1)∆n

(i−1)∆n−n−1 dt

)
≤ Cn

(n∆n)2

(
logn
n + 1

n

)
. For k > 2, by Lemma 2.1.5 in Jacod

and Protter (2011), Lemma A.3 along with Assumption 1, and Hölder’s in-

equality, we have that (n∆n)
kE

[(
Ei−1[ϵi]

)k]
≤ O

(
(log n)k

)
. Similar arguments

yield that Ei−1[uiuj ] = OLk

(
logn

(n∆n)2

)
, for i < j. To calculate the moments of

εi, we can use the same arguments and Lemma A.2 along with Assumptions 1

and 2(a). Finally, we can calculate the moments of ϵi and the cross moments of

εi and ϵi with similar arguments.

For any t ∈ [0, T ], we define t as t =
t

∆n
, t as t = 1− t

∆n
, and t as

t =
t∧(2∆n−t)

∆n
. The next lemma greatly simplifies notations for the proofs.

Lemma A.6. We have νi − νi−1 =
∫∆n

0 t dνi−1+t, νi − νi =
∫∆n

0 t dνi−1+t,

and ∆iν =
∫ 2∆n

0 t dνi−2+t.

Proof of Lemma A.6. We have

νi − νi−1 =
1

∆n

(∫ i∆n

(i−1)∆n

(
νi−1 +

∫ t

(i−1)∆n

dνs
)
dt− νi−1∆n

)
=

1

∆n

(∫ i∆n

(i−1)∆n

∫ t

(i−1)∆n

dνs dt

)
=

1

∆n

∫ i∆n

(i−1)∆n

∫ i∆n

s

dt dνs

=
1

∆n

∫ i∆n

(i−1)∆n

(i∆n − s) dνs
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=

∫ ∆n

0
s dνi−1+s,

and symmetry yields νi − νi =
∫∆n

0 t dνi−1+t. We also have that νi − νi−1 =

νi−νi−1+νi−1−νi−1 =
∫ 2∆n

∆n
t dνi−2+t+

∫∆n

0 t dνi−2+t =
∫ 2∆n

0 t dνi−2+t.

We can show the third assertion by using similar arguments.

Without loss of generality and with an abuse of notation, we rewrite νt it-

self as an Itô semimartingale with Grigelionis representation of the form (2.2).

Assumption 2(c) implies that a.s.
∑

s≤t |∆νs| < ∞ for any t ∈ [0, T ] and we

obtain

νt =

∫ t

0

b′s ds+

∫ t

0

σs dWs +
∑
s≤t

∆νs. (A.16)

Thus, we can define the continuous part of the process νt as ν
(c)
t =

∫ t

0
b′s ds +∫ t

0
σs dWs and the discontinuous part of the process νt as ν

(d)
t =

∑
s≤t ∆νs. For

any i = 1, . . . ,M , we also define ν̂
(c)

i as ν̂
(c)

i = ν
(c)
i + ui. The next lemma shows

that we can remove the discontinuous part of νt in the remaining of the proofs.

Lemma A.7. Under Assumptions 1 to 2(e), we have

∆
− 1

2
n

⌊T/∆n⌋∑
i=1

(
∆iν̂

n)2
1{|∆iν̂

n|≤α∆ϖ
n } = ∆

− 1
2

n

⌊T/∆n⌋∑
i=1

(
∆iν̂

(c))2
+ oP(1).

Proof of Lemma A.7. Step 1 This step shows that

∆
− 1

2
n

⌊T/∆n⌋∑
i=1

(
∆iν̂

)2
1{|∆iν̂|≤α∆ϖ

n } = ∆
− 1

2
n

⌊T/∆n⌋∑
i=1

(
∆iν̂

(c))2
+ oP(1).

From Eq. (A.16) along with Assumption 2(c), we can deduce that 4(∆iν̂)
2 =

(∆iν̂
(c)

)2 + 2(∆iν̂
(c)

)(∆iν
(d)) + (∆iν

(d))2 and thus

∆
− 1

2
n

⌊T/∆n⌋∑
i=1

(∆iν̂)
2
1{|∆iν̂|≤α∆ϖ

n } = ∆
− 1

2
n

⌊T/∆n⌋∑
i=1

(∆iν̂
(c)

)21{|∆iν̂|≤α∆ϖ
n }

+∆
− 1

2
n

⌊T/∆n⌋∑
i=1

2(∆iν̂
(c)

)(∆iν
(d))1{|∆iν̂|≤α∆ϖ

n }

+∆
− 1

2
n

⌊T/∆n⌋∑
i=1

(∆iν
(d))21{|∆iν̂|≤α∆ϖ

n }

= (I) + (II) + (III).
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In what follows, we first show that (I) = ∆
− 1

2
n

∑⌊T/∆n⌋
i=1

(
∆iν̂

(c))2
+ oP(1). The

domination 1{|x|>a} ≤ 2k|x|k/ak along with Lemma A.6 and Eq. (A.15) for any

k > 0 gives∣∣∣∣(I)− ⌊T/∆n⌋∑
i=1

(
∆iν̂

(c))2∣∣∣∣ = OL1

(
∆

− 1
2

n ∆−1
n

∆
(k+2)/2
n + (n∆n)

−(k+2)/2

ϖk
i

)

+OP

(
∆

− 1
2

n

ϖi
∆

− 1
p

n

(
∆n + (n∆n)

−1
))
. (A.17)

By choosing sufficiently large k and p and Assumption 2(d), we obtain (I) =∑⌊T/∆n⌋
i=1

(
∆iν̂

(c))2
+ oP(1). For (II), we have by Hölder’s inequality and As-

sumption 2(c) that

|(II)| = OP

(
∆

− 1
2

n

ϖk
i

∆
− 1

p
n

(
∆(k+1)/2

n + (n∆n)
−(k+1)/2

))
+OP

(
∆

− 1
2

n ϖ2−β
i

)
.

Thus, (II) = oP(1) by Assumption 2(d) and with a sufficiently large k. Finally,

we can show that (III) = oP(1) with the same arguments as for (II).

Step 2 We show that

∆
− 1

2
n

⌊T/∆n⌋∑
i=1

(
∆iν̂

n)2
1{|∆iν̂

n|≤α∆ϖ
n } = ∆

− 1
2

n

⌊T/∆n⌋∑
i=1

(
∆iν̂

)2
1{|∆iν̂|≤α∆ϖ

n } + oP(1).

We first show that
(
E
∣∣∆i(ν

n(c) − ν(c))
∣∣k) 1

k ≤ Cn−
5
8 for all k > 0 by Eq.

(A.13) in Lemma A.2 and Assumptions 1 and 2(a), Burkholder-Davis-Gundy

inequality along with Assumptions 2(b) and 2(e). By similar arguments, we

show that
∑⌊T/∆n⌋

i=1

∣∣∆i(ν
n(d) − ν(d))

∣∣ = OP
(
n−

3
8

)
. If we define (IV) as (IV) =

∆
− 1

2
n

∑⌊T/∆n⌋
i=1

(
∆iν̂

n)2(
1{|∆iν̂

n|≤α∆ϖ
n } − 1{|∆iν̂|≤α∆ϖ

n }

)
and (V) as

(V) = ∆
− 1

2
n

⌊T/∆n⌋∑
i=1

(
∆iν̂

n)2(
1{|∆iν̂

n|≤α∆ϖ
n } − 1{|∆iν̂|≤α∆ϖ

n }
)
,

it is sufficient to show that (IV) = oP(1) and (V) = oP(1). For (IV), we have

1{|∆iν̂
n|≤α∆ϖ

n } − 1{|∆iν̂|≤α∆ϖ
n }

= 1{|∆iν̂|>α∆ϖ
n ,|∆iν̂

n|≤α∆ϖ
n } − 1{|∆iν̂|≤α∆ϖ

n ,|∆iν̂
n|>α∆ϖ

n }

and that
{
|∆iν̂| > α∆ϖ

n , |∆iν̂
n| ≤ α∆ϖ

n

}
⊂

{
|∆i(ν̂

n − ν̂)| > α∆ϖ
n , |∆iν̂

n| ≤
α∆ϖ

n

}
∪
{
|∆i(ν̂

n−ν̂)| ≤ α∆ϖ
n , |∆iν̂| ∈ (α∆ϖ

n , 2α∆
ϖ
n ]

}
,
{
|∆iν̂| ≤ α∆ϖ

n , |∆iν̂
n| >

α∆ϖ
n

}
⊂

{
|∆i(ν̂

n− ν̂)| > α∆ϖ
n , |∆iν̂| ≤ α∆ϖ

n

}
∪
{
|∆i(ν̂

n− ν̂)| ≤ α∆ϖ
n , |∆iν̂

n| ∈
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(α∆ϖ
n , 2α∆

ϖ
n ]

}
. With similar arguments as for the proof of Eq. (A.17), (II) and

(III), it leads to

∆
− 1

2
n

⌊T/∆n⌋∑
i=1

(
∆iν̂

n)2
1{|∆iν̂|>α∆ϖ

n ,|∆iν̂
n|≤α∆ϖ

n } = oP(1).

We can also show ∆
− 1

2
n

∑⌊T/∆n⌋
i=1

(
∆iν̂

n)2
1{|∆iν̂|≤α∆ϖ

n ,|∆iν̂
n|>α∆ϖ

n } = oP(1), so

we can deduce that (IV)
P−→ 0. Finally, we have with similar arguments that

(V) = oP(1).

The next lemma shows that we can remove the drift from νt if we assume

Novikov’s condition Assumption 2(f) (see Novikov (1972)), which is required

to apply Girsanov theorem (see Girsanov (1960)). We consider an equivalent

probability measure P∗ under which νt is a local martingale, i.e., νt = ν0 +∫ t

0
σsdW

∗
s , where W

∗
t is a standard Wiener process under P∗.

Lemma A.8. Under Assumption 2(f) and if we assume that the statement of

Theorem 4.1 holds under P∗, the same statement holds under P.

Proof of Lemma A.8. We defineM t asM t = exp
( ∫ t

0
b′s
σs
dWs − 1

2

∫ t

0
(b′s)

2

σ2
s
ds
)
for

any 0 ≤ t ≤ T , which by Assumption 2(f) satisfies Novikov’s condition and

thus is a positive martingale. By Girsanov theorem, we can thus consider an

equivalent probability distribution P∗. Then, we have that the Radon-Nikodym

derivative is defined as dP∗

dP |FT = MT and W ∗
t = Wt +

∫ t

0
b′s
σs
dWs is a standard

Wiener process under P∗. To show that the statement of Theorem 4.1 holds

under P, it is sufficient to prove that

EP

[
h(X)1E

]
→ EP

[
h
(∫ T

0

wtdW̃t

)
1E

]
, (A.18)

for any E ∈ FT and any measurable function h. By a change of probability in

the expectation, we obtain

EP

[
h(X)1E

]
= EP∗

[
h(X)1EM

−1

T

]
.

Since M
−1

T ∈ FT and the statement of Theorem 4.1 holds under P∗, we can

deduce that

EP∗

[
h(X)1EM

−1

T

]
→ EP∗

[
h
(∫ T

0

wtdW̃t

)
1EM

−1

T

]
.

Finally, we obtain EP∗

[
h
( ∫ T

0
wtdW̃t

)
1EM

−1

T

]
= EP

[
h
( ∫ T

0
wtdW̃t

)
1E

]
, by

another change of probability in the expectation. Thus, we have shown Ap-

pendix A.3.
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A.4. Proof of Theorem 4.1

By Lemmas A.7 and A.8 along with Assumptions 1 to 2(f), we can assume that

νt is continuous with no drift. Let us write the Ft-martingale Xt as

Xt =


∆−1

n n−1
(
M̂ean−Mean

)
t

∆
− 1

2
n n−2

(
V̂ar1 −Var1

)
t

∆
− 1

2
n n−2

(
V̂ar2 −Var2

)
t

 =

⌊t/∆n⌋∑
i=1

(
ξi − Ei−1[ξi]

)
.

Here, ξi = [ξi,1; ξi,2; ξi,3] is a 3-dimensional vector defined by

ξi =


∆−1

n

(
ν̂i∆n −

∫ i∆n

(i−1)∆n
νt dt

)
∆

− 1
2

n

(
(∆iν̂)

2 − Ei−1

[
(∆iν̂)

2
]
+ Ei

[
(∆i+1ν̂)

2
]
−
∫ i∆n

(i−1)∆n

(
2
3σ

2
t + 2ϑ̆t

)
dt
)

· · ·

 ,
and Ft is the discretized filtration, i.e., Ft = F∆n⌊t/∆n⌋, for any t ∈ [0, T ].

In ξi, we do not explicit the third component, which is similar to the second

component. We now verify that all the conditions, namely the five Conditions

(7.27) to (7.31), from Theorem IX.7.28 (pp. 590-591) in Jacod and Shiryaev

(2013) are satisfied. We set Zt = 0, which is obviously a square-integrable Ft-

martingale. Thus, Condition (7.29) is directly satisfied. We also have that each

ξi is componentwise square-integrable, because ν̂i, νt, and σt have bounded 4th

moments by Lemma A.3 along with Assumption 1, and Assumption 2(g). We

show that Condition (7.27) holds with Bt = 0 in the following proposition.

Proposition A.1. Under Assumptions 1 to 2(b) and 2(g), we have for j =

1, 2, 3 that

sup
0≤t≤T

∣∣∣∣ ⌊t/∆n⌋∑
i=1

Ei−1[ξi,j ]

∣∣∣∣ P−→ 0. (A.19)

Proof of Proposition A.1. By Eq. (A.14) from Lemma A.5 along with Assump-

tions 1 and 2(a), we have

⌊T/∆n⌋∑
i=1

ξi,1 =
1

n∆n

⌊T/∆n⌋∑
i=1

∫ (i−1)∆n

0

∆iΨ(−t)dMt +

∫ i∆n

(i−1)∆n

Ψ(i∆n − t)dMt + oP(1).

Since it is a martingale, we deduce Eq. (A.19) from the martingale definition.

By Lemma A.6, we obtain that

Ei−1[ξi,2] = ∆
− 1

2
n

∫ i+1

i−1

(
2
t −

1

3

)
Ei−1[σ

2
t ] dt+∆

− 1
2

n Ei−1

[
u2i+1 −

ϑi+1

n∆n
+ u2i −

ϑi
n∆n

]
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+OL2

(
∆

1
2
n
log n

n∆n

)
= (I) + (II) +OL2

(
∆

1
2
n
log n

n∆n

)
. (A.20)

Since
∫ i+1

i−1

(
2
t − 1

3

)
σ2
i−1 dt = 0 and by Assumption 2(g), we obtain

sup
0≤t≤T

∣∣(I)∣∣ = oP(1).

By Lemma A.5 with Assumptions 1 and 2(a), we have
∣∣ sup0≤t≤T (II)

∣∣ = oL1(1),

whenever
(
logn
n2

) 2
7 ≺ ∆n which holds by Assumption 2(b). Thus, we can deduce

that sup0≤t≤T

∣∣∑⌊t/∆n⌋
i=1 Ei−1[ξi,2]

∣∣ P−→ 0. The proof of the case j = 3 follows

with the same arguments.

We show that Condition (7.28) holds in the following proposition.

Proposition A.2. Under Assumptions 1 to 2(b), 2(e) and 2(g), we have for

any 0 ≤ t ≤ T that

⌊t/∆n⌋∑
i=1

Vi−1[ξi]
P−→

∫ t

0

wuw
⊤
u du. (A.21)

Proof of Proposition A.2. Since ξi,1 = ui and Ei−1[ui] = OL2

(
logn
n∆n

)
, we have∑⌊t/∆n⌋

i=1

(
Ei−1[ξi,1]

)2
=

∑⌊t/∆n⌋
i=1 OL1

( (logn)2

(n∆n)2

)
= oL1(1) by Assumption 2(b).

Thus, Riemann integrability and Assumption 2(b) yield
∑⌊t/∆n⌋

i=1 Vi−1[ξi,1]
P−→∫ t

0
ϑ̆udu. From Eq. (A.20) and Assumptions 2(e) and 2(g), we obtain

⌊t/∆n⌋∑
i=1

Vi−1[ξi,2] =

⌊t/∆n⌋∑
i=1

Ei−1ξ
2
i,2 + oP(1).

By Eq. (A.15) from Lemma A.5 along with Assumptions 1 and 2(a), and by

Assumptions 2(b), 2(e) and 2(g), we obtain

⌊t/∆n⌋∑
i=1

Ei−1[ξ
2
i,2]

P−→
∫ t

0

σ̆4
u + 4σ̆2

uϑ̆u + 12ϑ̆2udu.

The proof of
∑⌊t/∆n⌋

i=1 Vi−1[ξi,3] follows with the same arguments if we replace

∆n by 2∆n. Since νt is a martingale,

⌊t/∆n⌋∑
i=1

Covi−1[ξi,1, ξi,2] =

⌊t/∆n⌋∑
i=1

Ei−1[ξi,1ξi,2] + oP(1) = oP(1)

and
∑⌊t/∆n⌋

i=1 Covi−1[ξi,1, ξi,3] = oP(1). Finally, we obtain with the same argu-

ments that
∑⌊t/(2∆n)⌋

i=1 Covi−1[ξi,2, ξi,3]
P−→ 1

2

∫ t

0
29
24 σ̆

4
u + 3

2 σ̆
2
uϑ̆u + 3

2 ϑ̆
2
udu.
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We show that Condition (7.30) holds in the following proposition.

Proposition A.3. Under Assumptions 1 to 2(b), 2(e) and 2(g), we have for

any 0 ≤ t ≤ T that

⌊t/∆n⌋∑
i=1

Ei−1[∥ξi∥21{∥ξi∥>ε}]
P−→ 0, (A.22)

Proof of Proposition A.3. By Hölder’s inequality, we have

E
∣∣∣∣ ⌊t/∆n⌋∑

i=1

Ei−1[∥ξi∥21{∥ξi∥>ε}

∣∣∣∣ ≤ C

√
E∥ξi∥4
∆2

n

√
P
{
∥ξi∥
∆

1/2
n

>
ε

∆
1/2
n

}
,

thus it is sufficient to have E∥ξi∥4 = O(∆2
n), whose proof follows from similar

arguments as in the proof of Lemma A.2 along with Assumptions 1 to 2(b), 2(e)

and 2(g).

We show that Condition (7.31) holds in the following proposition.

Proposition A.4. Under Assumptions 1 to 2(b), 2(e) and 2(g), we have for

any 0 ≤ t ≤ T and for any bounded 3-dimensional Ft-martingale M′ that

⌊t/∆n⌋∑
i=1

Ei−1[ξ
⊤
i ∆iM

′]
P−→ 0. (A.23)

Proof of Proposition A.4. When M′
t = Wt, from the proof of Proposition A.2

along with Assumptions 1 to 2(b), 2(e) and 2(g), we have Ei−1[ξi,1∆iW ] =

Ei−1[ui∆iW ] = OL1

(√
logn

n
√
∆n

)
, and E

(∑⌊t/∆n⌋
i=1 Ei−1[ξi,2∆iW ]

)2
= o(1). When

M′
t is a continuous martingale orthogonal toWt, since E|σt−σi−1|k ≤ C∆kγ

n , we

can approximate locally and replace σ2
t in ξi by σ

2
i−1 by using similar arguments

as in the proof of Proposition 4.1 (pp. 15-16) in Barndorff-Nielsen et al. (2006).

We denote the local approximation as ξ′i, and its conditional expectation as

ξ
(M)
t = Et[ξi]. By Theorem III.4.34 (p. 189) in Jacod and Shiryaev (2013),

we can express ξ
(M)
t into a stochastic integration of Wt and Mt. Thus, the

orthogonality of M′
t implies that (dξ

(M)
t )⊤(dM′

t) = 0, so we deduce that

Ei−1[ξ
′
i
⊤
∆iM

′
t] = Ei−1

[ ∫ i∆n

(i−1)∆n

(dξ
(M)
t )⊤(dM′

t)

]
= 0.

With the same arguments as in the proof of Eq. (6.10) in Todorov and Tauchen

(2011), if ξi is C-tight and M′
t is a discontinuous martingale orthogonal to

Mt = Nt −
∫ t

0
λs ds, then

∑⌊T/∆n⌋
i=1 ξi and

∑⌊T/∆n⌋
i=1 ∆iM

′ are jointly tight by

Corollary VI.3.33 (p. 353) in Jacod and Shiryaev (2013), and the left-hand side
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of Eq. (A.23) converges to the predictable quadratic variation of the limit of∑⌊T/∆n⌋
i=1 ξi and

∑⌊T/∆n⌋
i=1 ∆iM

′, which is obviously zero due to the orthogonal-

ity of continuous and discontinuous martingales. The C-tightness of ξi is implied

by
∑⌊T/∆n⌋

i=1 Ei−1|ξi,j |k
P−→ 0 for some k > 2, and this can be derived from local

boundedness of σt and Euki ≤ C(n∆n)
−k/2. With similar arguments, we can

show the case when M′
t is Mt∆n.

The next proposition is useful to prove the normalized CLT with feasible

variance. It is based on the continuous mapping theorem along with Slutsky’s

theorem.

Proposition A.5. Under Assumptions 1 and 2, we have

1

∆n

⌊T/∆n⌋∑
i=1

(∆iν̂)
4 P−→

∫ T

0

(
4

3
σ4
t + 8σ2

t ϑ̆t + 12ϑ̆2t

)
dt, (A.24)

⌊T/∆n⌋∑
i=1

ν̂i(∆iν̂)
2 P−→

∫ T

0

(
2

3
σ2
t νt + 2νtϑ̆t

)
dt, (A.25)

∆n

⌊T/∆n⌋∑
i=1

ν̂
2

i
P−→

∫ T

0

ν2t dt. (A.26)

Proof of Proposition A.5. We have that Lemma A.7 also holds for power greater

than 2. Thus, we can a consider continuous νt without truncation. For Eq.

(A.24), we can show that

∆−1
n

⌊T/∆n⌋∑
i=1

(∆iν̂)
4

= ∆−1
n

⌊T/∆n⌋∑
i=1

{
(∆iν)

4 + 6(∆iν)
2(∆iu)

2 + (∆iu)
4

}
+ oP(1)

= ∆−1
n

⌊T/∆n⌋∑
i=1

{
6

∫ i

i−2

(
(ν)
t )2

(
d

(ν)
t

)2
+ 6

(∫ i

i−2

2
tσ

2
t dt

)(
Ei−1u

2
i + Ei−2u

2
i−1

)
+
(
Ei−1u

4
i + Ei−2u

4
i−1 + 6Ei−1u

2
iEi−2u

2
i−1

)}
+ oP(1)

= ∆−1
n

⌊T/∆n⌋∑
i=1

{
6
1

2

(∫ i

i−2

2
tσ

2
t dt

)2

+ 6

(
σ2
i−2

∫ i

i−2

2
tdt

)(
ϑi−2

n∆n
+
ϑi−2

n∆n

)
+

(
3

(
ϑi−2

n∆n

)2

+ 3

(
ϑi−2

n∆n

)2

+ 6

(
ϑi−2

n∆n

)2)}
+ oP(1)
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P−→
∫ T

0

{
4

3
σ4
t + 8σ2

t

ϑt
n∆2

n

+ 12

(
ϑt
n∆2

n

)2}
dt.

For Eq. (A.25), we have

⌊T/∆n⌋∑
i=1

ν̂i(∆iν̂)
2 =

⌊T/∆n⌋∑
i=1

νi

(
(∆iν)

2 + (∆iu)
2
)
+ oP(1)

=

⌊T/∆n⌋∑
i=1

νi

(∫ i

i−2

2
tσ

2
t dt+ Ei−1u

2
i + Ei−2u

2
i−1

)
+ oP(1)

=

⌊T/∆n⌋∑
i=1

νi−2

(
σ2
i−2

∫ i

i−2

2
t dt+

ϑi−2

n∆n
+
ϑi−2

n∆n

)
+ oP(1)

P−→
∫ T

0

{
2

3
σ2
t νt + 2νt

ϑt
n∆2

n

}
dt.

For Eq. (A.26), we have

∆n

⌊T/∆n⌋∑
i=1

ν̂
2

i = ∆n

⌊T/∆n⌋∑
i=1

ν2i + oP(1)
P−→

∫ T

0

ν2t dt.

In what follows, we show the consistency of the estimator of non diverging

asymptotic variance, and the normalized CLT with feasible variance.

Proof of Eqs. (4.1) and (4.2). A linear combination of Eqs. (A.24) to (A.26)

yields Eqs. (4.1) and (4.2). First, n−4Σ̂n
22 converges in probability to

∫ T

0

(
σ4
t +

4σ2
t ϑ̆t + 12ϑ̆2t

)
dt by Theorem 4.1. Then, we obtain that

4
1

∆n

⌊T/∆n⌋∑
i=1

(∆iν̂)
4 P−→

∫ T

0

(
σ4
t + 6σ2

t ϑ̆t + 9ϑ̆2t
)
dt.

By subtracting 3
1−∥ϕ∥1

∑⌊T/∆n⌋
i=1 ν̂i(∆iν̂)

2 to it, we obtain

4
1

∆n

⌊T/∆n⌋∑
i=1

(∆iν̂)
4 − 3

1− ∥ϕ∥1

⌊T/∆n⌋∑
i=1

ν̂i(∆iν̂)
2 P−→

∫ T

0

(
σ4
t + 4σ2

t ϑ̆t + 3ϑ̆2t
)
dt.

If we add 9
(1−∥ϕ∥1)2

∆n

∑⌊T/∆n⌋
i=1 ν̂

2

i to it, we obtain

4
1

∆n

⌊T/∆n⌋∑
i=1

(∆iν̂)
4 − 3

1− ∥ϕ∥1

⌊T/∆n⌋∑
i=1

ν̂i(∆iν̂)
2 +

9

(1− ∥ϕ∥1)2
∆n

⌊T/∆n⌋∑
i=1

ν̂
2

i
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P−→
∫ T

0

(
σ4
t + 4σ2

t ϑ̆t + 12ϑ̆2t
)
dt.

Since 2
3
V̂ar1−V̂ar2

M̂ean
converges to 1

(1−∥ϕ∥1)2
in probability, we have

1

n4
Σ̂n

22 =
3

4

κ̂4(∆n)

n4
− (3η̂)

κ̂3(∆n)

n4
+ (3η̂)2

κ̂4(∆n)

n4

P−→
∫ T

0

(
σ4
t + 4σ2

t ϑ̆t + 12ϑ̆2t
)
dt.

We can show the other cases with similar arguments.

A.5. Proofs from Section 5

Proof of Corollary 5.1. A direct application of the Delta method to Theorem 4.1

with ∥ϕ∥1 = 0 yields the result.

Proof of Corollary 5.2. A direct application of the Delta method to Theorem 4.1

yields the result.

Proof of Corollary 5.3. A direct application of the Delta method to Theorem 4.1

yields the result.

Proof of Corollary 5.4. A direct application of the Delta method to Theorem 4.1

yields S
L−s−−−→ χ2

1 under H0. Under H1, we can show that S → ∞ since

ÂVar(∥̂ϕ∥1) = OP(1). It results from
M̂ean

∆2
n(V̂ar1−V̂ar2)

= OP(1), ∆
−2
n M̂ean = OP(1),

and ∆
− 1

2
n ∥̂ϕ∥1 ⪰ ∆

− 1
2

n .

Proof of Proposition 5.1. By Theorem 4.1, it is sufficient to consider only the

components of V̂ar. We have

1

n2
V̂ar =

⌊T/∆n⌋∑
i=1

(
ν̂i −

M̂ean

nT

)2

=

⌊T/∆n⌋∑
i=1

(
ν + ui −

∆n

T

⌊T/∆n⌋∑
j=1

(ν + uj)

)2

=

⌊T/∆n⌋∑
i=1

(
ui −

∆n

T

⌊T/∆n⌋∑
j=1

uj

)2

=

⌊T/∆n⌋∑
i=1

u2i −
∆n

T

( ⌊T/∆n⌋∑
i=1

ui

)2

.
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For the second term, we can deduce that ∆n

T

(∑⌊T/∆n⌋
i=1 ui

)2
= oP(1). For the

first term, we have by Lemma A.5 that Ei−1[u
2
i −∆nϑ̆] = OL1

(
logn

(n∆n)2

)
. Thus,

we obtain that

sup
0≤t≤T

∆
− 1

2
n

⌊T/∆n⌋∑
i=1

Ei−1[u
2
i −∆nϑ̆]

P−→ 0.

We also have that

∆−1
n

⌊T/∆n⌋∑
i=1

Ei−1(u
2
i −∆nϑ̆)

2 = ∆−1
n

⌊T/∆n⌋∑
i=1

Ei−1

[
u4i − 2ϑ̆∆nu

2
i + (ϑ̆∆n)

2
]

= ∆−1
n

⌊T/∆n⌋∑
i=1

2

(
ϑ

n∆n

)2

+ oP(1)

= 2
ϑ

n∆2
n

T + oP(1).

Thus, we obtain AVar(V̂ar) = 2ϑ
c T by Assumption 2(b). For ACov

(
V̂ar, V̂ar1

)
,

we first have that (∆iν̂)
2 = (∆iu)

2. Then, we obtain that

n−2V̂ar1 =

⌊T/∆n⌋∑
i=1

2(ui − ui−1)ui + oP(1).

Thus, we have

∆−1
n

⌊T/∆n⌋∑
i=1

Ei−1

[
(u2i −∆nϑ̆)2(u

2
i − ui−1ui −∆nϑ̆)

]

= 2∆−1
n

⌊T/∆n⌋∑
i=1

Ei−1

[
u4i − ui−1u

3
i − 2

ϑ

n∆n
u2i + ui−1ui

ϑ

n∆n
+

(
ϑ

n∆n

)2]

= 4∆−1
n

⌊T/∆n⌋∑
i=1

(
ϑ

n∆n

)2

+ oP(1)

P−→ 4

(
ϑ

c

)2

T.

Here, we use Assumption 2(b) in the convergence. We obtain ACov
(
V̂ar, V̂ar2

)
=

1
2

(
ϑ
c

)2

T with the same arguments. We can apply Theorem IX.7.28 (pp. 590-

591) in Jacod and Shiryaev (2013) since we can show that all the remaining

conditions are met with the same arguments as in the proof of Theorem 4.1. We

have n−2V̂ar1/(2T )
P−→ ϑ̆, and n−2V̂ar/T

P−→ ϑ̆. Thus, the continuous mapping

theorem and Slutsky’s theorem yield Eq. (5.14). Finally, a direct application of

the delta method gives Eq. (5.15).
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Proof of Corollary 5.5. Proposition 5.1 yields S′ L−s−−−→ χ2
1 under H ′

0. Under H ′
1,

we have

∆2
nV̂ar = ∆2

n

⌊T/∆n⌋∑
i=1

(
λ̂i −

M̂ean

T

)2

= ∆2
nn

2

⌊T/∆n⌋∑
i=1

(
ν̂i −

∆n

T

⌊T/∆n⌋∑
j=1

ν̂j

)2

= ∆2
nn

2

⌊T/∆n⌋∑
i=1

(
νi −

∆n

T

⌊T/∆n⌋∑
j=1

νj

)2

+OP(1)

= ∆nn
2

∫ T

0

(νt − ν)2 dt+ oP(1).

It implies M̂ean/(∆2
nV̂ar)

P−→ 0 because P(
∫ T

0
(νt − ν)2 dt > 0) = 1. Thus, we

obtain ∥̂ϕ∥H1
P−→ 1 and ÂVar(∥̂ϕ∥1 − ∥̂ϕ∥H1 = OP(1). It implies that the test

statistic S′ explodes.
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