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Abstract

We derive optimal maximin tests for parametric hypotheses in short panels with latent common factors.

We rely on a Generalized Method of Moments setting with optimal weighting under a large cross-sectional

dimension n and a fixed time series dimension T . We outline the asymptotic distributions of the estimators

as well as the asymptotic maximin optimality of the Wald, Lagrange Multiplier, and Likelihood Ratio-type

tests. The characterisation of optimality relies on finding the limit Gaussian experiment in strongly identified

GMM models under a block-dependence structure and unobserved heterogeneity. We reject sphericity of

idiosyncratic errors in an empirical application to a large cross-section of U.S. stocks, which casts doubt

on the validity of routinely applying Principal Component Analysis to short panels of monthly financial

returns.
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1 Introduction

Principal Component Analysis (PCA) and Factor Analysis (FA) aim at summarising the common

latent linear structure of multivariate data; see Anderson (2003) Chapters 11 and 14. When we

impose the sphericity restriction on the T × T error covariance matrix Vε in the estimation pro-

cedure, where T is the time series dimension, the FA estimator F̂ of the latent factors F boils

down to the PCA estimator; see Anderson and Rubin (1956). Sphericity corresponds to Vε = σ̄2IT

being a multiple of the identity matrix IT with unknown parameter σ̄2 > 0. It is a necessary and

sufficient condition for consistency of PCA estimates F̂ , when the cross-sectional dimension n is

large and T is fixed (Theorem 4 of Bai (2003); see discussion in Fortin et al. (2025) and Onatski

(2025)).1 Fortin et al. (FGS, 2023b) develop inferential tools for FA in short panels. Their Pseudo

Maximum Likelihood (PML) setting (White (1982), Gouriéroux et al. (1984)) under large n and

fixed T relies on a diagonal T × T covariance matrix of the errors without imposing sphericity,

Gaussianity, or cross-sectional independence.2 They derive feasible asymptotic distributions of FA

estimators of F and Vε in more general settings than in the available literature (e.g. Anderson and

Amemiya (1988)). This paper derives Generalized Method of Moments (GMM) testing proce-

dures of sphericity in short panels through comparison of constrained and unconstrained versions

of the FA-GMM estimators under optimal weighting (Hansen (1982)).3 Such an approach differs

1Cochrane (2005, p. 226) argues in favour of the development of appropriate large-n small-T tools for evaluating

asset pricing models, a problem only partially addressed in finance. In a short panel setting, Zaffaroni (2025) con-

siders inference for latent factors in conditional linear asset pricing models under sphericity based on PCA, including

estimation of the number of factors.
2Alvarez and Arellano (2022) develop PML approaches for dynamic panel models with non-sphericity, also achiev-

ing consistency in a fixed T setting (see Chamberlain and Moreira (2009) and Bai (2013, 2024) for other desirable

properties such as minimax optimality and efficiency from a fixed-effect perspective).
3Omitted latent factors are also called interactive fixed effects in the panel literature (Pesaran (2006), Bai (2009),

Moon and Weidner (2015), Freyberger (2018)). We find them in asset embeddings (Gabaix et al. (2023)). Ahn et al.

(2001,2013) use the terminology time-varying individual effects. They use optimal GMM criterion to estimate their

panel data model with random interactive effects and i.i.d. errors under fixed T , while Hayakawa et al. (2023) rely on
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from other tests of sphericity available in the literature; see e.g. Mauchly (1940), Bartlett (1951),

John (1972), Ledoit and Wolf (2002), Anderson (2003), Schott (2006), Onatski et al. (2013). Un-

like those papers, we target a test of sphericity for a covariance matrix with a low rank structure

recovered from FA estimates. Besides, it allows us to characterise the asymptotic optimal max-

imin properties of the usual trinity of tests, namely the Wald, Lagrange Multiplier, and Likelihood

Ratio-type tests, in a GMM framework (Newey and McFadden (1994)). These properties are

novel to the literature, even in the i.i.d. case, and have broad applicability for GMM tests of panel

models as shown in Section 3 below for the model of Chamberlain (1992) (see Arellano and Bon-

homme (2012) for identification of distributional characteristics when coefficients are random in

that model). Testing for sphericity with GMM tests in FA is simply a particular case. We estab-

lish an upper bound on the power in the maximin sense, i.e., the optimal power against the least

favorable directions among the local alternative hypotheses (Lehmann and Romano (LR, 2005),

Chapters 8 and 13.5.3). Maximin optimality does not impose restricting tests through concepts

like unbiasedness, conditioning, monotonicity, and invariance (see Romano et al. (2010) for a sur-

vey of optimality approaches in testing problems). It has a wider applicability to obtain tests with

asymptotically guaranteed power. The derivation of optimal maximin tests relies on finding the

limit Gaussian experiment in strongly identified GMM models under a block-dependence structure

and unobserved heterogeneity,4 before applying those maximin results to our FA model. In FA,

heterogeneity is driven by means affine in fixed effects. Andrews and Mikusheva (2022) exploit a

limit Gaussian experiment to design Bayesian decision rules and characterize optimal similar tests5

in the sense of maximizing weighted average power (WAP)6 in weakly identified GMM models.

We rely on the same strategy but to derive optimal maximin results in strongly identified GMM

models in a non-i.i.d. setting. Chen and Santos (2018) investigate maximin results for specification

testing, in particular the J-test of Hansen (1982) and the incremental J-test of Eichenbaum et al.

a transformed Gaussian PML for a dynamic panel data model.
4We refer to Bonhomme and Denis (2024a,b) for two recent surveys on accounting for heterogeneity in panel data.
5Optimal similar tests are also developed in e.g. Moreira (2003) and Andrews et al. (2006).
6WAP optimality is also used by e.g. Sowell (1996), Andrews (1998), and Mueller (2011).
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(1988), in an i.i.d. setting (see Newey (1985) for early work on optimality within the class of GMM

tests of overidentifying restrictions and Chen et al. (2024) for use in finance). Our maximin results

developed under a block-dependence structure and unobserved heterogeneity suit the particular

case of our FA-GMM sphericity tests and are new to the literature on the power optimality of the

trinity of GMM tests (see Engle (1984) for Asymptotically Uniformly Most Powerful Invariant

tests in a maximum likelihood framework). The characterisation of the Gaussian experiment in a

non-i.i.d. context is new. It is not a direct application of the available results for the i.i.d. setting,

and of independent interest. It can be exploited for other applications such as designing Bayesian

priors and optimal similar tests. The idea of using a Gaussian experiment based on the concept of

Local Asymptotic Normality (LAN) to study asymptotic optimal tests is rooted in Le Cam’s sta-

tistical work (see e.g. Le Cam (1986), van der Vaart (1998, 2002)). Choi et al. (1996) investigate

asymptotically uniformly most powerful (AUMP) tests in parametric and semiparametric models

through LAN technology.

The outline of the paper is as follows. In Section 2, we consider a linear latent factor model

and introduce GMM estimation and testing procedures for sphericity based on FA. We work under

a block-dependence structure to allow for weak dependence in the cross-section and to get con-

sistency of asymptotic variance estimators without imposing independence. Section 3 provides a

general theory for optimal maximin tests in strongly identified GMM models. The theory builds

on characterizing a limit Gaussian experiment under a block-dependence structure and unobserved

heterogeneity. Section 4 is dedicated to local asymptotic power, asymptotic distributions, and max-

imin properties of the trinity of tests for sphericity in the FA model. The maximin properties are

a by-product of the broad optimality results of Section 3. We run Monte Carlo (MC) experiments

in Section 5 to gauge the empirical size and power of our tests in small samples. We provide our

empirical application in Section 6. We reject sphericity on a large cross-section of U.S. stocks in

all subperiods between 1966 and 2023, which casts doubt on the validity of routinely applying

PCA to short panels of monthly financial returns. The presence of a common component driving

the variance of the error terms (Barigozzi and Hallin (2016), Renault et al. (2023)) might explain
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such a rejection. We collect our concluding remarks in Section 7. Appendices A and B gather

the regularity assumptions and proofs of the main theoretical results. Appendix C gives a spec-

tral characterisation of spherical models useful to distinguish constrained and unconstrained FA

models. Appendix D gives the characterisation of the unconstrained and constrained FA-GMM

estimators, and their feasible asymptotic distributions as well as the ones of the trinity of GMM

test statistics for sphericity under local alternative hypotheses. Appendix E in the Online Appendix

(OA) provides the detailed proofs of technical Lemmas 5-8 supporting the computations of Ap-

pendix D. Appendix F discusses practical implementation and provides a numerical study of the

performance of the new FA-GMM estimators. We put additional MC experiments in Appendix G.

Appendix H makes the link with the panel model of Chamberlain (1992) Section 4 and discusses

how we can incorporate second-order moment information in sets of orthogonality restrictions for

that model as in Arellano and Bonhomme (2012) Section 3.4 and our FA setting. Appendix I gives

the detailed proof of Proposition 3.

2 GMM Testing for Sphericity in Latent Factor Analysis

2.1 Latent Factor Model

We consider the linear FA model (e.g. Anderson (2003)):

yi = µ+ Fβi + εi, i = 1, ..., n, (1)

where yi = (yi,1, ..., yi,T )
′ and εi = (εi,1, ..., εi,T )

′ are T -dimensional vectors of observed data and

unobserved error terms for individual i. The k-dimensional vectors βi = (βi,1, ..., βi,k)
′ are latent

individual effects, while µ and F are a T × 1 vector and a T × k matrix of unknown parameters.

The number of latent factors k is an unknown integer smaller than T . In matrix notation, model

(1) reads Y = µ1′n + Fβ′ + ε, where Y and ε are T × n matrices, β is the n× k matrix with rows

β′
i, and 1n is a n-dimensional vector of ones.

5



Assumption 1 The T × T matrix Vε := lim
n→∞

E[ 1
n
εε′] is diagonal.

Matrix Vε is the limit cross-sectional average of the - possibly heterogeneous - error unconditional

variance-covariance matrix. The diagonality condition in Assumption 1 is standard in FA (in the

more restrictive formulation involving i.i.d. data). Assumption 1 allows for serial dependence

in idiosyncratic errors in the form of martingale difference sequences, like individual GARCH

and stochastic volatility processes, as well as weak cross-sectional dependence (see Assumption

2 below). It also accommodates common time-varying components in idiosyncratic volatilities

by allowing different entries along the diagonal of Vε. The diagonality condition in Assumption

1 corresponds to the unconstrained model versus the constrained model with Vε = σ̄2IT , for an

unknown scalar σ̄2 > 0, i.e., sphericity.

This paper focuses on the trinity of GMM tests for sphericity when T is fixed and n → ∞.

However, we can embed Model (1) as a particular case of the panel model of Chamberlain (1992);

see the beginning of Section 3. The theoretical results in Section 3 cover the optimal maximin

properties of the trinity of GMM tests in such a general framework. Hence our optimal theory has

broader applicability than only testing for sphericity with GMM tests in FA. In this section, we do

not outline explicitly the estimators and tests for the panel model of Chamberlain (1992) since we

do not use it in our empirics. They can been developed under the same lines as the ones below.

The fixed T perspective makes FA especially well-suited for applications with short panels.

Indeed, we work conditionally on the realizations of the latent factors F and treat their values as

parameters to estimate. Here, factors and loadings are interchanged in the sense that the βi and

F play the roles of the “factors" and the “factor loadings" in FA.7 We depart from classical FA

since the βi are not considered as random effects (e.g. with a Gaussian distribution) but rather as

fixed effects, namely incidental parameters. Working with fixed effects avoids specific assumptions

on the randomness of heterogeneity. Moreover, in Assumption 1, we neither assume Gaussianity

7The use of FA in this paper shares similarities with the applications of FA in psychometrics, in which the compo-

nents of vector yi are mental tests scores and the observations units i = 1, ..., n are individuals (Anderson (2003)).
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nor cross-sectional independence. Hence, the FA-GMM estimators defined below correspond to

maximizers of a GMM criterion in a more general setting than in the standard literature on FA

(Anderson and Amemiya (1988)).

Let us introduce the usual normalization for the latent factor matrix F = [F1 : · · · : Fk] in

population. Following classical FA, we set µβ = 0, Vβ = Ik, and F ′V −1
ε F = diag(γ1, ..., γk),

where µβ = lim
n→∞

β̄ and Vβ = lim
n→∞

Ṽβ with β̄ := 1
n

∑n
i=1 βi and Ṽβ := 1

n

∑n
i=1 βiβ

′
i. Then, under

our assumptions, we have Vy := plim
n→∞

V̂y = FF ′ + Vε, where V̂y := 1
n
Ỹ Ỹ ′ is the sample (cross-

sectional) variance matrix (the n columns of Ỹ are yi − ȳ and ȳ := 1
n

∑n
i=1 yi is the vector of

cross-sectional means) and VyV −1
ε Fj = (1 + γj)Fj , i.e., the Fj are eigenvectors of matrix VyV −1

ε

associated with eigenvalues 1 + γj , j = 1, ..., k. In Assumption A.1, we also normalize the mean

and variance of the betas in sample, namely β̄ = 0 and Ṽβ = Ik. Those standardizations of

the factor loadings wash out the incidental parameter problem (Neyman and Scott (1948); see

Lancaster (2000) for a review) since the individual loadings do not appear in µy := plim
n→∞

ȳ nor in

Vy, and we do not need to estimate them. It explains why we are able to get consistent FA-GMM

estimators for large n and fixed T in the below.8

The parameter set Θ is a compact subset of {θ = (µ′, vec(F )′, diag(Vε)
′)′ ∈ Rp : Vε is diagonal

and positive definite, F ′V −1
ε F is diagonal, with diagonal elements ranked in decreasing order}

with p = T (k + 2). Model (1) under Assumption 1 corresponds to the hypothesis H(k), while

the k-factor spherical model corresponds to the restriction Vε = σ̄2IT , for an unknown constant

σ̄2 > 0, and yields the hypothesis Hs(k) ⊂ H(k) . The complement of Hs(k) in H(k), denoted

by H̄s(k), agrees with a non-spherical k-factor model with Vε,tt ̸= Vε,ss, for at least one pair t ̸= s.

8The sample normalization of the fixed effects can be simply obtained by linear transformation of parameters µ

and F that are drifting with n. Indeed, suppose the DGP is yi = µ0 + F0β̃i + εi, where µ̃β̃ := 1
n

∑n
i=1 β̃i → 0 and

Ṽβ̃ := 1
n

∑n
i=1(β̃i− µ̃β̃)(β̃i− µ̃β̃)

′ → Ik as n → ∞. Then, we have yi = µ̃+ F̃ βi+εi with βi = C ′Ṽ
−1/2

β̃
(β̃i− µ̃β̃),

µ̃ = µ0 + F0µ̃β̃ and F̃ = F0Ṽ
1/2

β̃
C, where C is the orthogonal matrix of the eigenvectors of Ṽ 1/2

β̃
F ′V −1

ε FṼ
1/2

β̃
.

The fixed effects βi meet the desired sample normalization. The drifting parameters µ̃ and F̃ converge to µ0 and F0

as n → ∞. We omit dependence of parameters on n to ease notation.
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The model under H(k) is a strict subset of the unconstrained model with general variance Vy for

any k up to kmax, where kmax = kmax(T ) is the largest integer such that the number of degrees of

freedom df = 1
2
((T − k)2 − T − k) is strictly positive. Instead, Hs(k) gives a strict subset of the

unconstrained model for k up to T − 2 (see Lemma 4 and Corollary 2 in Appendix C). We show

in Appendix C that some Data Generating Processes (DGP) may admit FA representations with

different numbers of latent factors. We consider the representation with minimal k when defining

models under H(k) and Hs(k). In the design of the GMM tests in Section 2.3 below, we work

under the maintained assumption that the DGP admits an FA representation, i.e., k ≤ kmax, which

is the leading case for empirical applications in finance. Then, we test the null hypothesis Hs(k)

against the alternative hypothesis H̄s(k). We determine the number of latent factors k by using

the consistent estimator k̂ in FGS.9 We implement the test with k̂ and not kmax, since there is no

guarantee that we can write Vy as FF ′+Vε with a T × kmax matrix F having full column rank and

a T × T positive definite diagonal matrix Vε.

2.2 GMM Estimators in FA

A GMM approach to FA relies on the q × 1 orthogonality vector lim
n→∞

1
n

∑n
i=1E[g(yi, θ0)] = 0,

with g(yi, θ) := [(yi − µ)′, vech(yiy
′
i − Σ(ϑ)− µµ′)′]′ and q = (T (T + 3)/2)× 1, where Σ(ϑ) :=

FF ′+Vε and ϑ := (vec(F )′, diag(Vε)
′)′. Here, for a T×T symmetric matrix Z = (zi,j), we define

the 1
2
T (T + 1) × 1 vector vech(Z) =

(
1√
2
z11, ...,

1√
2
zT,T , {zi,j}i<j

)′
, where the out-of-diagonal

elements with indices i < j are ranked as (1, 2), (1, 3), ... , (2, 3), ... (T − 1, T ).10 The sample

average moment vector is ĝn(θ) = 1
n

∑n
i=1 g(yi, θ) =

[
(ȳ − µ)′, vech(V̂y + ȳȳ′ − Σ(ϑ)− µµ′)′

]′
.

9We can develop distributional results for testing Hs(k) against the alternative hypothesis of a non-spherical model

for k = kmax+1, ..., T−2 as well, i.e., when the DGP does not admit an FA representation. For the sake of conciseness,

we do not cover this case explicitly.
10This definition of the half-vectorization operator for symmetric matrices differs from the usual one by the ordering

of the elements, and the rescaling of the diagonal elements. It is more convenient for our lines of proof. For instance,

it holds 1
2∥A∥2 = vech(A)′vech(A), for a symmetric matrix A.
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Then, the FA-GMM estimator with optimal weighting matrix is:

θ̂ = argmin
θ∈Θ

ĝn(θ)
′(V̂g)

−1ĝn(θ), (2)

where matrix V̂g is a consistent estimator of the asymptotic variance in
√
nĝn(θ̃0) ⇒ N (0, Vg) de-

fined in Section D.3 accounting for cross-sectional dependence. Vector θ̃ = (µ′, vec(F )′, diag(Ṽε)
′)′

involves Ṽε := 1
n
E[εε′] instead of its large sample limit Vε in order to center the moment vector and

guarantee the CLT after rescaling by
√
n. The degree of overidentification is q−(p− 1

2
k(k−1)) =

df . In Section F of the OA, we provide an asymptotically equivalent FA-GMM estimator which

is easier to compute numerically as it yields the estimate of µ in closed form as a function of ϑ.

We also explain how we can compute numerically the FA-GMM estimators of ϑ based either on a

Newton-Raphson (NR) algorithm or a zigzag algorithm (Magnus and Neudecker (2007), Hautsch

et al. (2023)). In the latter, the step to update parameter matrix F for given Vε corresponds to a

weighted low-rank approximation problem. Due to the general form of the weighting, the solution

is not obtained through Singular Value Decomposition as in the zigzag algorithm for PML estima-

tion. We use the ideas in Manton et al. (2003), namely we solve an inner minimization problem

for diag(F ′V −1
ε F ) in closed form, and then apply the NR method to the outer minimization after

concentration to obtain the normalized columns of V −1/2
ε F . In Section F.3 of OA, we provide a

comparison of the numerical performance of these algorithmic choices. We find a strong advan-

tage of the NR algorithm in terms of computational speed, and thus we run our MC experiments

(Section 5) and our empirics (Section 6) with that one.

To establish the asymptotic normality of vector
√
nĝn(θ̃0) beyond an i.i.d. setting, we use a

block-dependence structure for the error terms as in FGS. It allows for weak cross-sectional de-

pendence and heteroschedasticity in idiosyncratic errors as in approximate factor models (Cham-

berlain and Rothschild (1983)).

Assumption 2 (a) The errors are such that ε = V
1/2
ε W Σ̌1/2, whereW = [w1 : · · · : wn] is a T×n

random matrix of standardized errors terms wi,t that are independent across i and uncorrelated
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across t, with E(|wi,t|4r) ≤ C uniformly in i, t, for constants C > 0 and r > 1, and Σ̌ = (σ̌i,j)

is a positive-definite symmetric n × n matrix, such that lim
n→∞

1
n

∑n
i=1 σ̌ii = 1. (b) Matrix Σ̌ is

block diagonal with Jn blocks of size bm,n, for m = 1, ..., Jn, where Jn → ∞ as n → ∞, and

Bm denotes the set of indices in block m. (c) There exist constants δ̌ ∈ [0, 1] and Č > 0 such

that max
i∈Bm

∑
j∈Bm

|σ̌i,j| ≤ Čbδ̌m,n. (d) The block sizes bm,n and block number Jn are such that

n−r
∑Jn

m=1 b
r(1+δ̌)
m,n = o(1) and n−3/2

∑Jn
m=1 b

2
m,n = o(1).

The block-dependence structure as in Assumption 2(a)-(b) is satisfied, for instance, when there

are unobserved industry-specific factors independent among industries and over time, as in Ang

et al. (2020). In empirical applications, blocks can match industrial sectors (Fan et al. (2016)).

Assumption 2(c) covers within-blocks sparsity when δ̌ < 1, but it does not impose it since we

allow δ̌ = 1. Assumption 2(d) generalizes the condition used in FGS, which applies for r = 2, to

any r > 1, i.e., we require existence of error moments at an order slightly above the fourth one

(finite kurtosis). With blocks of homogeneous size bm,n = Cnᾱ, ᾱ > 0, Assumption 2(d) holds if

ᾱ < min{1
2
, r−1
r(δ̌+1)−1

}. Assumption 2 covers both the null hypothesis of sphericity of Vε and the

alternative hypothesis of deviations from it.

2.3 GMM Tests in FA

We consider the usual trinity of test statistics in the GMM framework outlined in the previous

subsection, but in an FA context. The sphericity of Vε under the null hypothesis corresponds to

T − 1 linear constraints a(θ) := L′
1T
diag(Vε) = 0, where L1T is a T × (T − 1) full-rank matrix

such that L1TL
′
1T

= IT − 1
T
1T1

′
T and L′

1T
L1T = IT−1. The Wald (W), Lagrange Multiplier (LM)

and Likelihood Ratio-type (LR) statistics are defined by (see e.g. Newey and McFadden (1994) for

the general case and Satorra (1989) for covariance structure analysis):

ξWn = na(θ̂)′(Ω̂W )−1a(θ̂), ξLMn = nλ̂′(Ω̂LM)−1λ̂, ξLRn = n
(
Qn(θ̂

c)−Qn(θ̂)
)
, (3)
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where vector λ̂ stacks the T − 1 Lagrange multipliers for the minimization of the GMM crite-

rion Qn(θ) = ĝn(θ)
′(V̂g)

−1ĝn(θ) for θ ∈ Θ under the constraint a(θ) = 0, and vector θ̂c is the

vector of constrained FA-GMM estimates. Matrix Ω̂W = L′
1T
Σ̂VεL1T is a consistent estimator

of the asymptotic variance in
√
na(θ̂) ⇒ N (0,ΩW ), based on the unconstrained FA-GMM es-

timator θ̂, where ΣVε is the asymptotic variance of
√
ndiag(V̂ε − Ṽε) characterised in Appendix

D.1. Matrix Ω̂LM =
(
L′
1T
Σ̂c

Vε
L1T

)−1

is a consistent estimator of the asymptotic variance in
√
nλ̂ ⇒ N (0,ΩLM), based on the constrained estimator θ̂c.11 The trinity of FA-GMM test statis-

tics is made of (3).

3 Optimal Maximin GMM Tests

In this section, we provide a general theory for optimal maximin tests in strongly identified GMM

models. The theory exploits a limit Gaussian experiment given in the next subsection for a block-

dependence structure (like Assumption 2) and unobserved heterogeneity instead of i.i.d. obser-

vations. The characterisation of the Gaussian experiment in a non-i.i.d. context is not a direct

application of the available results for the i.i.d. setting. The moment specification covers our FA

model where heterogeneity is driven by means affine in fixed effects (see Section 4). It also covers

the panel data model of Chamberlain (1992) Section 4. To recall that framework, let us consider

the i.i.d. random vector yi = (Yi, z
′
i)
′ with Yi being vector-valued, so that

Yi = d(zi, ζ) +R(zi, ζ)βi + εi, (4)

where zi is a vector of observed regressors, ζ is the vector of parameters for known functions d

and R, and βi are treated as random coefficients. His approach consists in using the assumpion

E[εi|zi, βi] = 0, to get a system of orthogonality restrictions involving the finite-dimensional pa-

11The link between the Lagrange multipliers vector and the score, i.e. λ̂ = −L′
1T

∂Qn(θ̂
c)

∂diag(Vε)
, implies the equivalence

of the LM and score statistics in the GMM setting with optimal weighting matrix (see Newey and McFadden (1994)

for the general result).
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rameters ζ and ϕ = E[βi], such that the associated GMM estimator is semiparametrically efficient.

Specifically, he shows how to obtain a matrix of instruments B(zi, ζ) such that B(zi, ζ)R(zi, ζ) =:

F (ζ) is independent of zi. Then, from (4), we have B(zi, ζ)[Yi − d(zi, ζ)] = F (ζ)βi + ui, where

ui = B(zi, ζ)εi and E[ui] = 0. Chamberlain (1992) gets the orthogonality restrictions:

E[B(zi, ζ)(Yi − d(zi, ζ))− F (ζ)ϕ] = 0. (5)

In our fixed effect setting, we get ϕ = µβ = lim
n→∞

1
n

∑n
i=1 βi. Equation (5) takes the form:

lim
n→∞

1
n

∑n
i=1E[g(yi, θ)] = 0, where θ gathers ζ and ϕ. In the next subsection, we consider simi-

lar sets of orthogonality restrictions but under heterogeneous distributions P0,i for yi and allowing

for cross-sectional dependence. Hence, our theory on maximin GMM tests also applies to panel

model (4). The particularity of the FA model presented in Section 2 is that we can simply take

B(zi, ζ) = IT since matrix R does not depend on zi. Moreover, by the latent factor structure,

we can take the normalisation ϕ = 0, so that those parameters do not appear in the orthogonality

restrictions. In Appendix H in the OA, building on Arellano and Bonhomme (2012) Section 3.4,

we further show that the stacked vector (Y ′
i, (Yi ⊗ Yi)

′)′ yields conditional moment restrictions of

the type studied by Chamberlain (1992) written for an augmented vector of individual effects and

parameters. It paves the way to incorporate second-order moment information in sets of orthogo-

nality restrictions for panel model (4) as in our FA setting.

3.1 Gaussian Experiment for Strongly Identified GMM

Let us consider the GMM orthogonality restriction lim
n→∞

1
n

∑n
i=1EP0,i

[g(yi, θ0)] = 0, where the P0,i

are unknown possibly heterogeneous distributions for random vectors yi, g(·, θ) is a q-vector of

known orthogonality functions and θ0 ∈ Θ ⊂ Rp is an unknown parameter vector, with q ≥ p. In

the i.i.d. case, P0,i = P0, i = 1, ..., n. We test the null hypothesis H0 : a(θ0) = 0, or equivalently

θ0 ∈ Θ0 := {θ ∈ Θ : a(θ) = 0}, where a : Θ → Rr is a differentiable function, with r ≤ p

and A := ∂a(θ0)
∂θ′

has full row-rank. To study the local power of test statistics, the sequence of

local alternative hypotheses H1,n is such that 1
n

∑n
i=1EPn,i

[g(yi, θn)] = 0 for all n ∈ N, where
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θn = θ0 + 1√
n
h, with h ∈ Rp, and {Pn,i : i = 1, ..., n} is a triangular array of probability

distributions. We assume that:

[y1 : · · · : yn] = [x1 : · · · : xn]S, (6)

where the xi are independent random vectors with possibly heterogeneous distributions Qn,i with

pdf qn,i, for i = 1, ..., n, and S is a nonsingular block-diagonal n× n matrix, with diagonal blocks

Sm of size bm,n, for m = 1, ..., Jn. The block structure is known, while matrices Sm are unknown

nuisance parameters, |Sm| = 1 without loss of generality, and subject to conditions introduced

below to control the degree of cross-sectional dependence when the number Jn of blocks diverges

as n→ ∞. Setting S = In gives the independence case.

Assumption 3 The family qn,i is quadratic mean differentiable (q.m.d.) such that
√
qn,i(x) −√

q0,i(x) =
1

2
√
n
f q
i (x)

√
q0,i(x)+Rn,i(x), for any i = 1, ..., n and x ∈ RT , where f q

i ∈ T (Q0,i) :=

{f ∈ L2(Q0,i) :
�
f(x)q0,i(x)dx = 0} and

�
[Rq

n,i(x)]
2dx = O( 1

nα ) uniformly in i, with α > 1.

The linear space T (Q0,i) is the tangent space for distribution Q0,i with pdf q0,i prevailing under

the null hypothesis, and a measurable function f ∈ T (Q0,i) is called a score (van der Vaart (1998)

Chapter 25). For h = 0 and f q
i = 0 for all i, we get the null hypothesis, while for Ah ̸= 0, we

get a sequence of local alternative hypotheses converging to the null hypothesis at rate n1/2. In the

definition of the q.m.d. property in Assumption 3, we use a stronger decay O( 1
nα ), with α > 1,

for the squared L2 norm of the remainder term, instead of the usual decay o( 1
n
) of the i.i.d. case

(LR, Chapter 12, Chen and Santos (2018), Section 3.1.2, Andrews and Mikusheva (2022), Eq.

(2)), since we want to accommodate a block-dependence structure (Assumption 2). Here, we face

a trade-off between the rate α and the granularity of blocks.

Assumption 4 In block structure (6), the block sizes bm,n are such that n−ρ/2
(

logn
n

∑Jn
m=1 b

3
m,n +

logn
nα/2

∑Jn
m=1 b

2
m,n

)
= o(1), where ρ := min{3

2
(1 − 1

2r−1
), 1} > 0 for r > 1. Constant r > 1 is

related to higher-order moments, i.e., we have EP0,i
[∥g(yi, θ0)∥2r] ≤ C and EQ0,j

[(f q
j (xj))

2r] ≤

C, for all i, j and a constant C > 0, and EPn,i
[∥g(yi, θ0)∥2r] ≤ C for all i, n.

13



Assumption 4 is stronger than Assumption 2(d).12 It entails a trade-off between the existence

of higher-order moments and the strength of cross-sectional dependence. Indeed, for r ≤ 2,

smaller values of moment order 2r imply smaller values of coefficient ρ, which in turns requires

more granular blocks. With cross-sectional independent errors (and α ≥ 2), Assumption 4 is met

as soon as r > 1, i.e. the orthogonality vector and the score admit moments at order slightly

above two. With blocks of homogeneous size bm,n = Cnᾱ, ᾱ > 0, Assumption 4 holds if ᾱ <

min{ρ/4, (ρ+α)/2−1}. It requires ρ+α > 2, which holds if, and only if, r > α+1
2α−1

. To simplify

the proofs, in Assumption 4 we state the bounds on higher-order moments uniformly across i. We

can relax uniformity at the cost of more cumbersome conditions on the block sizes bm,n.

The blocks Ym = [yi : i ∈ Bm], for m = 1, ..., Jn, are independent with joint densities

pmn (Ym) = qmn (YmS
−1
m ), where qmn (Xm) :=

∏
i∈Bm

qn,i(xi) and Bm denotes the set of indices in

block m. We obtain the individual densities pn,i, for i ∈ Bm, from pmn by marginalization. We

define similarly the densities pm0 , qm0 and p0,i by replacing qn,i with q0,i in the definition of qmn .

The next lemma shows that the densities qmn and pn,i inherit the q.m.d. behavior of qn,i through an

adequate block-aggregation and marginalization of the initial f q
i ∈ T (Q0,i).

Lemma 1 Let Assumptions 3 and 4 hold. We have (a)
√
qmn (Xm) −

√
qm0 (Xm) =

1
2
√
n
fm(Xm)

√
qm0 (Xm) + Rm

n (Xm), for Xm ∈ RT×bm,n , where fm(Xm) =
∑

i∈Bm
f q
i (xi) is

such that fm ∈ T (Qm
0 ), and

�
[Rm

n (Xm)]
2dXm = O(b2m,n(

b2m,n

n2 + 1
nα )). (b) pn,i(y) − p0,i(y) =

1√
n
fp
i (y)p0,i(y) + Rp

n,i(y), for y ∈ RT and i ∈ Bm, where fp
i (y) = EPm

0
[fm(YmS

−1
m )|yi = y]

is such that fp
i ∈ T (P0,i) with the conditional expectation EPm

0
[·|yi = y] being w.r.t. the r.v. Ym

in block m, and the remainder Rp
n,i is such that 1

n

∑n
i=1

�
g(y; θ0)1

τ (y)Rp
n,i(y)dy = o( 1√

n
) where

1τ (y) := 1{∥g(y, θ0)∥ ≤ τn} with τn = n
1

2(2r−1) log n.

12Indeed, Assumption 4 implies bm,n = O(
√
n) as a necessary condition. Then, n−r

∑Jn

m=1 b
r(1+δ̌)
m,n ≤

n−r
∑Jn

m=1 b
2r
m,n = O( 1

n3/2

∑Jn

m=1 b
3
m,n) = o(1) for r ≥ 3/2. Moreover, for r < 3/2, by the Hölder inequal-

ity we have n−r
∑Jn

m=1 b
2r
m,n ≤ J1−2r/3

n

nr

(∑Jn

m=1 b
3
m,n

)2r/3

≤
(

1
n5/2−3/(2r)

∑Jn

m=1 b
3
m,n

)2r/3

= o(1) because

5/2 − 3/(2r) > 1 + ρ/2. Further, because α ≤ 2 and ρ ≤ 1, the condition logn
n(ρ+α)/2

∑Jn

m=1 b
2
m,n = o(1) implies

1
n3/2

∑Jn

m=1 b
2
m,n = o(1).
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In Lemma 1(b), we consider the difference of two pdf, instead of the difference of square roots

thereof as in the usual definition of q.m.d., and we control the order of the remainder term Rp
n,i

through the average truncated L2 scalar product with the orthogonality function, since this bound

is needed for the rest of our analysis (see proof of Lemma 2).

We assume that 1
n

∑n
i=1EP0,i

[g(yi, θ0)] = o( 1√
n
). Otherwise, the null hypothesis H0 for the

parametric test implies a local alternative hypothesis for the validity of the moment restrictions,

which instead is a maintained hypothesis under both the null and local alternative hypotheses for

the parametric test. Then, we have the next result linking the population covariances of fp
i (yi) and

g(yi, θ0), i = 1, ..., n, with vector h. Indeed, the required validity of the orthogonality restriction
1
n

∑n
i=1EPn,i

[g(yi, θn)] = 0 for any n for the sequence of local alternative hypotheses defined by

θn and Pn,i, implies that vector h ∈ Rp and functions fp
i ∈ T (P0,i), i = 1, ..., n, are linked. In

an heterogeneous context driven by Pn,i, i = 1, ..., n, that link is instrumental for the local power

analysis of a semiparametric model based on a limit Gaussian experiment that we establish below.

Without ensuring 1
n

∑n
i=1EPn,i

[g(yi, θn)] = 0, we cannot control the ’directions’ fp
i obtained from

the initial scores f q
i , from which the sequence of the data generating process Pn,i approaches P0,i,

i = 1, ..., n, at rate 1/
√
n in the sequence of local alternative hypotheses. It exemplifies a key

difference w.r.t. an i.i.d. setting where it holds trivially.

Lemma 2 Under Assumptions 3-4, lim
n→∞

1
n

∑n
i=1

(
EP0,i

[g(yi, θ0)f
p
i (yi)] + EP0,i

[∂g(yi,θ0)
∂θ′

]h
)
= 0.

Let P n
n,f and P n

0 be the joint probability distributions for n-tuple samples [y1 : · · · : yn] =

[x1 : · · · : xn]S with the xi independent draws from Qn,i, and from Q0,i. Matrix S is the same

under P n
n,f and P n

0 and meets Assumption 4. The index f subsumes dependence of P n
n,f on score

functions f q
i and vector h. The likelihood ratio Ln,f :=

dPn
n,f

dPn
0

is

Ln,f =
Jn∏

m=1

pmn (Ym)

pm0 (Ym)
=

Jn∏
m=1

qmn (Xm)

qm0 (Xm)
=

Jn∏
m=1

∏
i∈Bm

qn,i(xi)∏
i∈Bm

q0,i(xi)
=

n∏
i=1

qn,i(xi)

q0,i(xi)
, (7)

by the independence of the Ym among blocks, and the independence of the xi. This product rep-

resentation of the likelihood ratio does not depend from the characteristics of the block struc-
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ture but only on the assumption that data is a one-to-one right-transformation of random matrix

[x1 : · · · : xn] with independent columns.13

Let J0 := lim
n→∞

1
n

∑n
i=1EP0,i

[∂g(yi,θ0)
∂θ′

], Vg := lim
n→∞

EPn
0

[
( 1√

n

∑n
i=1 g(yi, θ0))(

1√
n

∑n
i=1 g(yi, θ0))

′
]
,

and Σ0 := (J ′
0V

−1
g J0)

−1, and assume validity of a CLT for the sample moment vector under the

null hypothesis (see Lemma 7 for the statement in the FA-GMM setting).

Assumption 5 We have 1√
n

∑n
i=1 g(yi, θ0) ⇒ N (0, Vg), under P n

0 .

Proposition 1 Let Assumptions 3-5 hold. (a) We have logLn,f = Zn,f − 1
2
σ2
f + oPn

0
(1), where

Zn,f = 1√
n

∑n
i=1 f

q
i (xi) = 1√

n

∑Jn
m=1 fm(YmS

−1
m ) and σ2

f := lim
n→∞

EPn
0
[(Zn,f )

2] =

lim
n→∞

1
n

∑n
i=1

�
[f q

i (x)]
2q0,i(x)dx. Moreover, (b) under P n

0 , we have Zn,f ⇒ N (0, σ2
f ) and

logLn,f ⇒ N (−1

2
σ2
f , σ

2
f ). (8)

(c) The sequences P n
n,f and P n

0 are contiguous. (d) We have :

logLn,f = h′Z∗
n −

1

2
h′Σ−1

0 h+ Z⊥
n − 1

2
σ2
⊥ + oPn

0
(1), (9)

where Z∗
n = −J ′

0V
−1
g

1√
n

∑n
i=1 g(yi, θ0) and Z⊥

n are asymptotically mutually independent, and

distributed as N (0,Σ−1
0 ) and N (0, σ2

⊥) under P n
0 , with σ2

f = h′Σ−1
0 h+ σ2

⊥.

When we multiply σ2
f by 4, we get the limit cross-sectional average of the so-called Fisher Infor-

mation for the q.m.d. families associated to the scores f q
i ∈ T (Q0,i). The latter are mapped into

the random variable Zn,f ∈ T (P n
0 ), where T (P n

0 ) denotes the linear space of square integrable,

zero-mean random variables under P n
0 . The moment restriction lim

n→∞
1√
n

∑n
i=1EP0,i

[g(yi, θ0)] = 0

implies that the components of vector 1√
n

∑n
i=1 g(yi, θ0) belongs to space T (P n

0 ) up to a term o(1).

13We cover model (4) by assuming Y := [Y1 : · · · : Yn] = [x1 : · · · : xn]S, with the xi independent draws from

Qn,i, and from Q0,i, but conditionally on Z = [z1 : · · · : zn]. We further assume that regressors Z are exogenous for

the testing problem at hand, i.e., the distribution of Z is the same under Pn
n,f and Pn

0 . Then, we get decomposition (7)

as follows: Ln,f = pn(Y )
p0(Y ) = pn(Y|Z)

p0(Y|Z) =
∏Jn

m=1
qmn (Xm)
qm0 (Xm) =

∏n
i=1

qn,i(xi)
q0,i(xi)

.
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Hence, we have the decomposition T (P n
0 ) = H ∗

n ⊕ H ⊥
n , where H ∗

n is the q-dimensional linear

subspace of T (P n
0 ) spanned by 1√

n

∑n
i=1

(
gj(yi, θ0)− EP0,i

[gj(yi, θ0)]
)
, for j = 1, ..., q, and H ⊥

n

is the orthogonal complement of H ∗
n in T (P n

0 ) w.r.t. the standard L2(P
n
0 ) scalar product. In the

proof of Proposition 1(d), we use Lemma 2 to show that the projection of Zn,f onto H ∗
n is given by

h′Z∗
n+oPn

0
(1) while Z⊥

n is the projection of Zn,f onto the orthogonal complement H ⊥
n . In particu-

lar, the projection onto H ∗
n depends asymptotically on the sequence of local alternative hypotheses

via vector h ∈ Rp only. In (9) the log likelihood ratio is the sum of a first part that characterizes a

LAN parametric model (see Definition 13.4.1 in LR), with ’sufficient statistic’ Z∗
n and ’parameter’

h, and a second part that corresponds to the nonparametric ’nuisance’ contribution induced by Z⊥
n .

From Proposition 1 and joint asymptotic normality of 1√
n

∑n
i=1 g(yi, θ0) and logLn,f with asymp-

totic covariance −J0h under P n
0 , Le Cam’s Third Lemma (LR, Corollary 12.3.2) implies under

P n
n,f :

1√
n

n∑
i=1

g(yi, θ0) ⇒ N (−J0h, Vg). (10)

The Gaussian random vector N (−J0h, Vg) yields the Gaussian experiment for our problem. We

can estimate matrices J0 and Vg consistently (see Section D.3 for the FA-GMM setting). If we

consider matrices J0 and Vg given, the Gaussian experiment corresponds to a generalized linear

regression model under Gaussian errors with a single q-dimensional observation, a p-dimensional

unknown parameter vector h, and design matrix J0. The null hypothesis is the linear restriction

Ah = 0.

3.2 Maximin GMM tests

Let us now establish a characterisation of asymptotic power of tests in terms of Gaussian experi-

ments building on the arguments used in the proof of Theorem 13.4.1 in LR. Consider a sequence

of tests ϕn, i.e., a sequence of functions on sample space Yn, where Y is the sample space of

one observation, with values in [0, 1]. Let βn,f (ϕn) := EPn
n,f

[ϕn] denote its power under the se-

quence of local alternative hypotheses. From Proposition 1(d), and by using a tightness argument

17



and Prohorov Theorem, for any subsequence nj , there exists a further subsequence njm such that

(ϕnjm
, Z∗′

njm
, Z⊥

njm
)′ ⇒ (ϕ̄, Z∗′, Z⊥)′, under P njm

0 , where ϕ̄ is a random variable admitting values

in [0, 1] living on the same probability space as Z∗ and Z⊥, i.e., the weak limits of Z∗
n and Z⊥

n .

Then, from (9), we get (ϕnjm
, Lnjm ,f ) ⇒ (ϕ̄, exp{h′Z∗ − 1

2
h′Σ−1

0 h + Z⊥ − 1
2
σ2
⊥}), under P njm

0 ,

and thus

βnjm ,f (ϕnjm
) = E

P
njm
0

[ϕnjm
Lnjm ,f ] → E[ϕ̄ exp{h′Z∗ − 1

2
h′Σ−1

0 h+ Z⊥ − 1

2
σ2
⊥}], (11)

where E[·] denotes the expectation w.r.t. (ϕ̄, Z∗′, Z⊥)′. Suppose that the test sequence ϕn is

such that its weak limit ϕ̄ is independent of Z⊥. It occurs e.g. for tests that are based on LAN

GMM estimators such that θ̂n = θ0 + Σ0
1√
n
Z∗

n + oPn
0
( 1√

n
), or more generally tests that are

based asymptotically on transformations of 1√
n

∑n
i=1 g(yi, θ0). This class includes the W, LM

and LR statistics. Then, since E[exp{Z⊥ − 1
2
σ2
⊥}] = 1, the expectation in the RHS of (11) is

equal to E[ϕ̄ exp{h′Z∗ − 1
2
h′Σ−1

0 h}] = |Σ0|1/2
(2π)p/2

�
mϕ̄(z

∗) exp{h′z∗ − 1
2
h′Σ−1

0 h− 1
2
z∗′Σ0z

∗}dz∗ =

Eh[mϕ̄(Z)], where mϕ̄(z
∗) = E[ϕ̄|Z∗ = z∗] is the conditional expectation under the joint distri-

bution of (ϕ̄, Z∗′)′, and Eh[·] denotes expectation w.r.t. random variable Z ∼ N (Σ−1
0 h,Σ−1

0 ) with

parameter h. It follows:

βnjm ,f (ϕnjm
) → Eh[mϕ̄(Z)], (12)

for a further subsequence njm of any subsequence nj , and a test function mϕ̄ in the Gaussian ex-

periment Z ∼ N (Σ−1
0 h,Σ−1

0 ). Since Z̃ := Σ0Z ∼ N (h,Σ0), we can write the limit in (12)

equivalently as Eh[ϕ̃(Z̃)] for a test ϕ̃ in the Gaussian experiment Z̃ ∼ N (h,Σ0). The matrix Σ0

corresponds to the inverse of the Fisher Information matrix in usual likelihood theory for the Gaus-

sian experiment with unknown h and known Σ0. Moreover, Z̃ corresponds to the GLS estimator,

i.e., the sufficient statistic in the Gaussian linear regression model implied by (10).

We now use the subsequence convergence in (12) to get an upper bound in the maximin sense,

i.e., the optimal power against the least favorable directions among the local alternative hypotheses

(LR, Chapters 8 and 13.5.3). For linear hypotheses on vector h in the Gaussian experiment Z̃ ∼
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N (h,Σ0), the chi-square test is maximin optimal (see Lemma 3 and Problem 8.29 in LR) and we

can build on the arguments in the proof of Theorem 13.5.4 in LR to get the next result.

Proposition 2 Let ϕn be a sequence of tests such that EPn
0
[ϕn] → α, with α ∈ (0, 1), and the

subsequence weak limit is independent of Z⊥. Under Assumptions 3-5, we have for any λ2nc > 0:

lim sup
n→∞

inf{βn,f (ϕn) : h′A′(AΣ0A
′)−1Ah ≥ λ2nc} ≤ 1− Fχ2(r,λ2

nc)
(cr,1−α), (13)

where Fχ2(r,λ2
nc)

is the cdf of the chi-square distribution with r degrees of freedom and non-

centrality parameter λ2nc, and cr,1−α is the (1 − α)-quantile of the central chi-square distribution

with r degrees of freedom.

The quadratic form h′A′(AΣ0A
′)−1Ah is the non-centrality parameter of the non-central chi-

square distribution of ζ = Z̃ ′A′(AΣ0A
′)−1AZ̃ under the Gaussian experiment Z̃ ∼ N (h,Σ0).

The test that rejects for large values of ζ is maximin optimal for the linear hypothesis Ah = 0.

The W, LM and LR GMM tests are ϕn = {ξUn ≥ cr,1−α}, for U = W,LM,LR. Under standard

regularity conditions, which we establish for the sphericity test in the FA model in the next section,

they satisfy the next assumption.

Assumption 6 For the W, LM and LR GMM tests, ϕn meets the conditions of Proposition 2

and the asymptotic local power is such that βn,f (ϕn) → 1 − Fχ2(r,λ2
nc)

(cr,1−α), with λ2nc =

h′A′(AΣ0A
′)−1Ah.

In particular, independence of the weak limit ϕ̄ from Z⊥ holds, because the GMM tests are asymp-

totically quadratic forms of affine transformations of the sample orthogonality vector
1√
n

∑n
i=1 g(yi, θ0). The asymptotic power is increasing with λ2nc. Then, Inequality (13) holds

as an equality, and we deduce the maximin optimality for the trinity of GMM tests.

Corollary 1 Under Assumption 3-6, the W, LM and LR GMM tests of the null hypothesis

H0 : a(θ0) = 0 are asymptotically maximin optimal.

19



4 Maximin Sphericity Tests

In the framework of Section 2 with composite null and alternative hypotheses and multi-dimensional

parameter, we cannot expect in general to establish Uniformly Most Powerful (UMP) tests. In-

stead, we can establish optimality with the broad maximin results of the previous section. To see

this, let us study the asymptotic power of the test statistics against local alternative hypotheses in

which we have a local deviation from sphericity. Specifically, under H1,loc(k), we use the matrix

Vε,loc := σ̄2IT + 1√
n
∆ε, where σ̄2 > 0 and ∆ε ̸= 0 is a diagonal matrix normalized such that

tr(∆ε) = 0. Variance Vε,loc is positive-definite for n large enough. The normalization tr(∆ε) = 0

is feasible by subtracting a multiple of the identity and including the latter in the spherical compo-

nent. By setting tr(∆ε) = 0, we use r = T − 1 parameters to describe the local alternative, that

is the number of restrictions of the test. Under the local alternative H1,loc, the parameter θn is such

that a(θn) = 1√
n
δ, with δ := L′

1T
diag(∆ε).

To link this section with the previous one, let us characterize the heterogeneity and cross-

sectional dependence in the sphericity test for the FA model. We have Y = [x1 : · · · : xn]S, with

xi = mi(θ)+V
1/2
ε,n wi, and S := Σ̌1/2, where the mean mi(θ) = µsi+Fγi involves scalar si, i.e., the

ith element of vector (S−1)′1n, vector γi, i.e. the ith column of β′S−1, and the variance is Vε,n =

σ̄2IT + 1√
n
∆ε. Hence, we have qn,i(xi) = |Vε,n|−1/2φi

(
V

−1/2
ε,n (xi −mi(θ0))

)
, where the pdf φi of

vector wi is normalized with mean zero and variance the identity matrix for all i. The score func-

tion for the q.m.d. condition in Assumption 3 is f q
i (xi) = − 1

2σ̄2 [∇ logφi (σ̄
−1(xi −mi(θ0)))]

′∆ε

(σ̄−1(xi −mi(θ0))), where ∇ denotes the gradient operator. In Proposition 3 below we show that

Assumptions 3 and 6 are met in the FA model under the regularity conditions in our Assumptions

A.1-A.8. Moreover, the mean mi(θ) is affine in the fixed effects. As already mentioned, in our

FA-GMM setting, we avoid the incidental parameter problem through the standardizations β̄ = 0

and Ṽβ = Ik. On the contrary, if the mean function mi(θ) is nonlinear in the fixed effects, then

we get inconsistent estimates for θ0, when T is fixed. As discussed in Hahn and Newey (2004)

for example, this inconsistency occurs because only a finite number of observations are available
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to estimate each individual effect. Hence, the estimation error for the individual effects does not

vanish as the sample size n grows, and this error contaminates the estimates of parameters of inter-

est. Arellano and Bonhomme (2012) and Bonhomme (2012) investigate the incidental parameter

problem in random coefficient models for fixed T . The next proposition states the asymptotic dis-

tributional equivalence of the trinity of GMM test statistics for sphericity under local alternative

hypotheses. Appendix I of OA gives its detailed proof.

Proposition 3 Under Assumptions 1, 2 with condition (d) replaced by condition logn
n1+ρ/2

∑Jn
m=1 b

3
m,n+

log
n(ρ+α)/2

∑Jn
m=1 b

2
m,n = o(1), A.1-A.8, and the local alternative hypothesis H1,loc(k), as n → ∞

and T is fixed, we have ξUn = ξWn + op(1), for U = LM,LR, and ξUn ⇒ χ2(T − 1, λ2loc),

for U = W,LM,LR, where the noncentrality parameter of the chi-square random variable

χ2(T − 1, λ2loc) with T − 1 degrees of freedom is

λ2loc := δ′Ω−1
W δ = diag(∆ε)

′L1T (L
′
1T
ΣVεL1T )

−1L′
1T
diag(∆ε). (14)

Moreover, Assumptions 3-6 for establishing validity of the Gaussian experiment hold.

The maximin properties of the GMM tests in FA is thus a direct consequence of Corollary 1

by taking r = T − 1 and λ2nc = λ2loc. The asymptotic distribution under the null hypothesis of

sphericity obtains by setting δ = 0. The proof of Proposition 3 in Appendix D.3 relies on adapting

the standard distributional results of the GMM literature (see e.g. Newey and McFadden (1994)).

In particular, for FA-GMM inference, we need to explicitly address the normalization of the pa-

rameters corresponding to the latent factors. The asymptotic equivalence stated in Proposition 3

breaks down if we do not use an optimal weighting matrix in the GMM criterion, and we end up

with weighted sums of noncentral chi-square random variables. For example, it happens when we

compare directly a constrained and unconstrained Gaussian pseudo likelihood (see FGS), which

do not exploit optimal weighting in their construction. We can show that the second-order ex-

pansion of the Gaussian pseudo likelihood criterion underlying the FA estimator of FGS yields

(minus) a GMM criterion with a non-optimal weighting matrix (V 0
y )

−1 ⊗ (V 0
y )

−1. Besides, we
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also have asymptotic distributional equivalence with a test statistic based on the Hausman princi-

ple (Hausman (1978)), i.e., considering a test statistic based on a weighted quadratic form in the

difference between constrained estimator θ̂c (efficient but not robust to deviation from sphericity)

and unconstrained estimator θ̂ (robust but not as efficient).

5 Monte Carlo Experiments

This section gives a Monte Carlo assessment of size and power for our trinity of sphericity tests

under non-Gaussian errors. Let us start with a description of the DGP similar to the one under-

lying the MC experiments in FGS. The good numerical performance reported in Section F.5 of

OA for FA-GMM estimates motivates us to choose a Newton-Raphson algorithm for the criterion

minimization (see description in Section F.2.1 of OA). In the DGP, the betas are βi
i.i.d.∼ N(0, Ik),

with k = 2, and the matrix of factor values is F = V
1/2
ε UΓ1/2, where U = F̃ (F̃ ′F̃ )−1/2 and

vec(F̃ ) ∼ N(0, ITk). The diagonal matrix Γ = Tdiag(3, 2) yields 1
T
F ′V −1

ε F = diag(3, 2), i.e.,

the "signal-to-noise" ratios equal 3 and 2 for the two factors. Under the null hypothesis of spheric-

ity (DGP1), we set Vε = IT , and we generate the idiosyncratic errors by εi,t = h
1/2
i,t zi,t, where

hi,t = ci + αihi,t−1z
2
i,t−1, with zi,t ∼ IIN(0, 1). We use the constraint ci = σii(1 − αi) with uni-

form draws for the idiosyncratic variances V [εi,t] = σii ∼ U [1, 4], so that V [εi,t] =
ci

1−αi
= σii.

Such a setting allows for cross-sectional heterogeneity in the variances of εi,t under sphericity

with σ̄2 = lim
n→∞

1
n

∑
i σii. The ARCH parameters are uniform draws αi

i.i.d.∼ U [0.2, 0.5] with an

upper boundary of the interval ensuring existence of fourth-order moments. Under the alterna-

tive hypothesis (DGP2), we generate the diagonal elements of Vε = diag(h1, ..., hT ) through a

common time-varying component in idiosyncratic volatilities (Barigozzi and Hallin (2016), Re-

nault et al. (2023)) via the ARCH ht = 0.6 + 0.5ht−1z
2
t−1, with zt ∼ IIN(0, 1). This com-

mon component with unconditional variance V [h
1/2
t zt] = 0.6/(1 − 0.5) = 1.2 induces a devi-

ation from spherical errors. We generate the idiosyncratic errors by εi,t = h
1/2
t h

1/2
i,t zi,t, where

hi,t = ci + αihi,t−1z
2
i,t−1, with zi,t ∼ IIN(0, 1) mutually independent of zt. We use the constraint
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ci = σii(1 − αi) with uniform draws for the idiosyncratic variances V [εi,t] = σii
i.i.d.∼ U [1, 4],

so that V [εi,t/h
1/2
t ] = ci

1−αi
= σii. Such a setting allows for cross-sectional heterogeneity in the

variances of the scaled εi,t/h
1/2
t . To study local power (DGP3), we set the diagonal elements of

Vε = diag(ȟ1, ..., ȟT ) with ȟt = 1.2 + 1/
√
n, t = 1, ..., T − 1, and ȟT = 1.2 − (T − 1)/

√
n,

so that εi,t = ȟ
1/2
t h

1/2
i,t zi,t. We generate 5000 panels of returns of size n × T for each of the 100

draws of the T × k factor matrix F and common ARCH process ht, t = 1, ..., T , in order to keep

the factor values constant within repetitions, but also to study the potential heterogeneity of size

and power results across different factor paths. The factor betas βi, idiosyncratic variances σii, and

individual ARCH parameters αi are the same across all repetitions in all designs of the section. We

opt for three different cross-sectional sizes n = 500, 1000, 5000, and three values of time-series

dimension T = 6, 12, 24. The p-values are computed over 5, 000 draws.

We provide the empirical size and power results in % in Table 1 for the W test. The results for

the LM and LR tests gathered in Section G of the OA are similar. The number of latent factors is set

equal to two.14 Size of all tests is close to its nominal level 5%, with size distortions smaller than

1%, except for n = 500. Power computation is not size adjusted. Global power is close to 100%.

Local power ranges is above 22% and reaches 100% for T = 24. The asymptotic local power can

be computed from the noncentrality parameter λ2loc given in (14) using the DGP parameters, and

its value for T = 6, 12 and 24 is 19%, 83%, and 100%. The MC outputs for n = 5000 are close

to those numbers as expected from asymptotic theory. The approximate constancy of local power

w.r.t. n, for large n, is coherent with theory implying convergence to asymptotic local power. We

can conclude that our testing procedure for sphericity with FA-GMM estimates works well in our

simulations, and should be relevant for applied work.

As a final remark, when sphericity fails, the huge Bias, Standard Deviation, and Root Mean

Square Error exhibited by the PCA estimates in the numerical study of Section F.5 in OA play

against relying on them in short panels. It is not the case for the unconstrained FA-GMM and PML

14The numbers are similar with an estimated k.
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estimators.

ξWn Size (%) Global Power (%) Local Power (%)

T 6 12 24 6 12 24 6 12 24

n = 500 6.5 6.2 6.2 93 99 100 29 98 97

(0.4) (0.3) (0.3) (17.2) (0.0) (0.0) (11.4) (4.6) (1.2)

n = 1000 5.8 5.7 5.6 97 100 100 26 95 100

(0.3) (0.3) (0.3) (12.9) (0.0) (0.0) (10.3) (8.0) (0.0)

n = 5000 5.4 5.3 5.2 100 100 100 22 90 100

(0.3) (0.3) (0.3) (0.0) (0.0) (0.0) (9.0) (12.9) (0.0)

Table 1: For each sample size combination (n, T ), we provide the average size, power, and local

power in % for the test statistic ξWn under DGP1-3. Nominal size is 5%. In parentheses, we report

the standard deviations for size, power, and local power across 100 different draws of the factor

path. The number of latent factors is set equal to two.

6 Empirical Application

In this section, we test the sphericity hypothesis in short subperiods of the Center for Research

in Securities Prices (CRSP) panel of stock returns. We consider monthly returns of U.S. com-

mon stocks trading on the NYSE, AMEX, or NASDAQ between January 1963 and December

2023, and having a non-missing Standard Industrial Classification (SIC) code. We partition sub-

periods into bull and bear market phases according to the classification methodology of Lunde

and Timmermann (2004).15 We implement the sphericity tests using nonoverlapping windows of

T = 20 months, thereby ensuring that we can allow for up to 14 latent factors in each subperiod

15We fix their parameter values λ1 = λ2 = 0.2 for the classification based on the nominal S&P500 index. Bear

periods are close to NBER recessions.
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(see FGS).16 The size of the cross-section n ranges from 1768 to 6142, and the median is 3680.

We only consider stocks with available returns over the whole subperiod, so that our panels are

balanced. In each subperiod, we sequentially test for the number of factors to get a consistent

estimate k̂ of the number of latent factors based on the likelikood ratio test of FGS.17 We compute

the variance-covariance estimator using a block structure implied by the partitioning of stocks by

the first two digits of their SIC code. The number of blocks ranges from 61 to 87 over the sample,

and the number of stocks per block ranges from 1 to 641. The median number of blocks is 76 and

the median number of stocks per block is 21. We display the values for the W test statistic over

time for each subperiod in Figure 1 on the right vertical axis, while the red horizontal segments

give k̂, i.e., the estimated number of latent factors on the right vertical axis. The red dotted line

corresponds to the critical value of a χ2(19) distribution at significance level 5%/35, where 35 is

the number of windows, i.e., a Bonferroni correction. We reject strongly the null hypothesis of

sphericity,18 and this for all subperiods with values ranging from 64.6 to 466.8. Evidence against

the null hypothesis is not necessarily larger around market downturns with large k̂. We prefer to

plot the values of the Wald test statistic instead of their associated p-values since the p-values are

tiny. For example, the asymptotic distribution, which is here the one of a χ2(19) r.v., already gives

a p-value of 5.3557 × 10−13 when ξWn = 100. In line with our Monte Carlo results in Table 1,

since we have large cross-sections of stocks in each subperiod, we benefit from the good power

16Our empirical results also hold with T = 16 and T = 24 or overlapping windows. For longer sample sizes such

as T = 36 and T = 60, sphericity is also strongly rejected.
17Alternatively, we can use the specification test (J-test) of Hansen (1982) based on the estimated value of the

unconstrained optimal FA-GMM criterion (see Ahn et al. (2013) for use in a panel data model with random interactive

effects and i.i.d. errors) instead of the classical FA likelihood ratio statistic to determine the number of factors. Its

asymptotic distribution is given by a chi-square distribution with df degrees of freedom under the null hypothesis of

k factors. In our empirics and unreported simulations, we find that the use of optimal versus non-optimal weighting

does not affect the estimated value k̂.
18Unreported results show that we also reject most of the time (60%) sphericity on monthly U.S. macroeconomic

indicators (FRED-MD database developed by McCracken and Ng (2016)) with nonoverlapping windows of T = 20.
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properties of our testing procedure. The pictures are very similar for the LM and LR tests, and

thus omitted. The strong rejection is corroborated by running sphericity tests on windows of 6

months within subperiods (15 tests inside each subperiod of length T = 20). It thus points to

a time-varying behavior of V 1/2
ε,tt , especially in the second part of the sample. The rejection of

sphericity might be explained by the presence of a common component driving the variance of the

error terms; see e.g. Barigozzi and Hallin (2016), Renault et al. (2023) for theory and empirical

evidence in favour of variance factors.

7 Concluding Remarks

Sphericity is key to achieve consistency of factor estimates with PCA in a large-n and fixed-T

setting. This paper provides optimal maximin GMM tests to check whether it holds on the data or

not. If not, empirical researchers should refrain from running PCA in short panels. Our empirics

show that the assumption of sphericity is doubtful in our financial data. The optimal maximin

properties in our FA-GMM framework are a by-product of obtaining the limit Gaussian exper-

iment in strongly identified GMM models under a block-dependence structure and unobserved

heterogeneity. They have a broader pertinence in panel models than only in our FA setting. The

characterisation of the Gaussian experiment in a non-i.i.d. context is new and is of independent

interest. It might be useful for other applications such as designing Bayesian priors and optimal

similar tests or AUMP tests.
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Appendix

A Regularity assumptions

In this appendix, we list and comment the additional assumptions used to derive the large sample

properties of the estimators and test statistics in the FA model. We denote a generic constant by

C > 0. Let θ0 = (µ′
0, vec(F0)

′, diag(V 0
ε )

′)′ = (µ′
0, ϑ

′
0)

′ denote the vector of true parameter values

in the FA model with k latent factors, which is an interior point of compact set Θ = M × T ,

with M ⊂ RT and T ⊂ {ϑ ∈ R(k+1)T : Vε is positive definite, h(ϑ) = 0} and h(ϑ) is the

k(k − 1)/2× 1 vector of the above-diagonal elements of F ′V −1
ε F .

Assumption A.1 The loadings are normalized such that β̄ = 1
n

∑n
i=1 βi = 0 and Ṽβ := 1

n

∑n
i=1 βiβ

′
i

= Ik, for any n. Moreover, |βi| ≤ C, for all i.

Assumption A.2 We have |σ̌i,j| ≤ C, for all i, j.

Assumption A.3 In the FA model with k latent factors, we have: Σ(ϑ) = Σ(ϑ0), ϑ ∈ T ⇒

ϑ = ϑ0, up to sign changes in the columns of F .

Assumption A.4 MatrixMF0,V 0
ε
⊙MF0,V 0

ε
is non-singular, whereMF,Vε := IT−F (F ′V −1

ε F )−1F ′V −1
ε

is the GLS oblique projector and ⊙ denotes the Hadamard product (i.e., element-wise matrix prod-

uct).

Assumption A.5 (a) The T (T+1)
2

× T (T+1)
2

symmetric matrix D = lim
n→∞

Dn exists, where Dn =

1
n

∑n
i=1 σ̌

2
iiV [vech(wiw

′
i)]. (b) We have δT (T+1)/2 (V [vech(wiw

′
i)]) ≥ c, for all i ∈ S̄, where

S̄ ⊂ {1, ..., n} with 1
n

∑n
i=1 1i∈S̄ ≥ 1− 1

2C̄
, for constants C̄, c̄ > 0, such that σ̌ii ≤ C̄. (c) We have

lim
n→∞

κn = κ for a constant κ ≥ 0, where κn := 1
n

∑Jn
m=1

(∑
i ̸=j∈Bm

σ̌2
ij

)
.

Assumption A.6 In the FA model with k + 1 factors, (a) function L0(ϑ) = −1
2
log |Σ(ϑ)| −

1
2
Tr

(
V 0
y Σ(ϑ)

−1
)

has a unique maximizer ϑ∗ = (vec(F ∗)′, diag(V ∗
ε )

′)′ over T , and (b) we have

V 0
y ̸= F ∗(F ∗)′ + V ∗

ε .
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Assumption A.7 Matrix QB := lim
n→∞

1
n
B′Σ̌B is positive-definite, where B = [1n : β]. Moreover,

E[wi,twi,swi,r] = 0, for all t, s, r.

Assumption A.8 The pdf φi of random vector wi is such that (a) E[∥∇ logφi(wi)∥2r∥wi∥2r] ≤

C and E[∥wi∥4r] ≤ C, for all i and some constants C > 0 and r > 1, and (b) it holds� [√
φi[(IT + 1

σ̄2
√
n
∆ε)x]−

√
φi(x)− 1

2σ̄2
√
n
[∇ logφi(x)]

′∆εx
√
φi(x)

]2
dx = O(n−α), uniformly

in i, with α > 1.

Assumption A.1 states standard normalization restrictions and uniform bounds on factor load-

ings. Assumption A.2 gives uniform bounds on covariances of the idiosyncratic errors. Assump-

tion A.3 implies global identification in the FA model (see Lemma 5 in FGS). It also implies that

the non-zero eigenvalues of matrix V 0
y V

−1
ε are distinct. Otherwise, the normalization condition of a

diagonal F ′V −1
ε F would fail to fix the rotational invariance of latent factors up to sign change. As-

sumptions A.1-A.3, together with Assumptions 1 and 2, yield consistency of FA-GMM estimators

(see Section D.1). Assumption A.4 is the local identification condition in the FA model (Lemma

7 in FGS). We use it to establish well-defined asymptotic expansions of FA-GMM estimators and

test statistics (see Sections D.1, D.2 and D.4). We use Assumption A.5 together with Assumptions

2 and A.2 to invoke a CLT based on a multivariate Lyapunov condition to establish the asymp-

totic normality of FA-GMM estimators and asymptotic chi-square distribution of the trinity of test

statistics. It extends Lemma 2 in FGS to any r > 1, i.e., requiring existence of error moments

slightly above order 4 (finite kurtosis). In the verification of the Lyapunov condition, we establish

bounds for higher-order moments of U-statistics generalizing the results in McConnell and Taqqu

(1986) beyond symmetric variables using the Marcinkiewicz and Zygmund (1937) inequality and

results in de la Peña (1992) and Giné, Latala and Zinn (2000). The mild Assumption A.5(b) re-

quires that the smallest eigenvalue of V [vech(wiw
′
i)] is bounded away from 0 for all assets i up to

a small fraction. In Assumption A.5(c), in order to have κn bounded, we need either mixing de-

pendence in idiosyncratic errors within blocks, i.e., |σ̌i,j| ≤ Cρ|i−j|, for i, j ∈ Bm and 0 ≤ ρ < 1,

or vanishing correlations, i.e., |σ̌i,j| ≤ Cb−s̄
m , for all i ̸= j ∈ Bm and a constant s̄ ≥ 1/2, with
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blocks of equal size. In Assumption A.6, part (a) defines the pseudo-true parameter value (White

(1982)) under the alternative hypothesis, and part (b) is used to establish the consistency of the

LR test for the number of factors under global alternative hypotheses (see proof of Proposition 4

of FGS). We use a sequential testing procedure based on the LR statistic to select consistently the

number of factors. We use Assumption A.7 to apply a Lyapunov CLT (see proof of Lemma 7 in

FGS) when deriving the asymptotic normality of the FA estimators as well as a feasible CLT for

the sample orthogonality vector based on a consistent estimator of Vg (Section D.3). Finally, we

use Assumption A.8 to show that the FA model meets the q.m.d. condition in Assumptions 3, and

the uniform bounds in Assumption 4, needed to establish the Gaussian experiment in Section 3.

Assumption A.8 holds e.g. for a Gaussian distribution.

B Proofs of Propositions 1-2 and Lemmas 1-2

Proof of Lemma 1: Part (a). We use
∏N

i=1 bi −
∏N

i=1 ai =
∑N

i=1(
∏i−1

j=1 aj)(bi − ai)(
∏N

j=i+1 bj),

for real sequences ai and bi. Then, we have:√
qmn (Xm)−

√
qm0 (Xm) =

∏
i∈Bm

√
qn,i(xi)−

∏
i∈Bm

√
q0,i(xi)

=
1

2
√
n

∑
i∈Bm

(
∏

j∈Bm:j≤i

√
q0,j(xj))f

q
i (xi)(

∏
j∈Bm:j>i

√
qn,j(xj))

+
∑
i∈Bm

(
∏

j∈Bm:j<i

√
q0,j(xj))R

q
n,i(xi)(

∏
j∈Bm:j>i

√
qn,j(xj)), (B.1)

from Assumption 3. We get
√
qmn (Xm)−

√
qm0 (Xm) =

1
2
√
n
fm(Xm)

√
qm0 (Xm)+R

m
n (Xm), where:

Rm
n (Xm) :=

1

2
√
n

∑
i∈Bm

(
∏

j∈Bm:j≤i

√
q0,j(xj))f

q
i (xi)(

∏
j∈Bm:j>i

√
qn,j(xj)−

∏
j∈Bm:j>i

√
q0,j(xj))

+
∑
i∈Bm

(
∏

j∈Bm:j<i

√
q0,j(xj))R

q
n,i(xi)(

∏
j∈Bm:j>i

√
qn,j(xj))

=:
1

2
√
n

∑
i∈Bm

Rm
n,i,1(Xm) +

∑
i∈Bm

Rm
n,i,2(Xm). (B.2)
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Next, we bound theL2 norms of functionsRm
n,i,1 andRm

n,i,2 in (B.2). We have
�
[Rm

n,i,1(Xm)]
2dXm =

(
�
[f q

i (x)]
2q0,i(x)dx)

� [∏
j∈Bm:j>i

√
qn,j(xj)−

∏
j∈Bm:j>i

√
q0,j(xj)

]2∏
j∈Bm:j>i dxj = O(

b2m,n

n
),

uniformly in i, by an argument similar to (B.1) and Assumption 3. Moreover,
�
[Rm

n,i,2(Xm)]
2dXm =�

[Rq
n,i(x)]

2dx = O( 1
nα ), uniformly in i, from Assumption 3. By the triangular inequality, we get�

[Rm
n (Xm)]

2dXm = O(ϱ2m,n), where ϱ2m,n := b2m,n(
b2m,n

n2 + 1
nα ).

Part (b). We use pn,i(yi) =
�
pmn (Ym)dYm,−i =

�
qmn (YmS

−1
m )dYm,−i if i ∈ Bm, and simi-

larly p0,i(yi) =
�
qm0 (YmS

−1
m )dYm,−i, where dYm,−i denotes integration w.r.t. the variables yj ,

for j ∈ Bm with j ̸= i. Then, from Lemma 1(a): pn,i(yi) − p0,i(yi) =
�
[qmn (YmS

−1
m ) −

qm0 (YmS
−1
m )]dYm,−i =

�
[
√
qmn (YmS

−1
m )−

√
qm0 (YmS

−1
m )][

√
qmn (YmS

−1
m )+

√
qm0 (YmS

−1
m )]dYm,−i =

1√
n

�
fm(YmS

−1
m )qm0 (YmS

−1
m )dYm,−i+R

p
n,i(yi) =

1√
n
EPm

0
[fm(YmS

−1
m )|yi]p0,i(yi)+Rp

n,i(yi),where

Rp
n,i(yi) := 2

�
Rm

n (YmS
−1
m )

√
qm0 (YmS

−1
m )dYm,−i +

�
[
√
qmn (YmS

−1
m )−

√
qm0 (YmS

−1
m )]2dYm,−i =�

Rm
n (YmS

−1
m )[

√
qm0 (YmS

−1
m ) +

√
qmn (YmS

−1
m )]dYm,−i + 1

4n
EPm

0
[fm(YmS

−1
m )2|yi]p0,i(yi)

+ 1
2
√
n

�
Rm

n (YmS
−1
m )fm(YmS

−1
m )

√
qm0 (YmS

−1
m )dYm,−i. By the triangular and Cauchy-Schwarz in-

equalities, we get the upper bound:

|Rp
n,i(yi)| ≤ (

�
[Rm

n (YmS
−1
m )]2dYm,−i)

1/2

(√
p0,i(yi) +

√
pn,i(yi)

+
1

2
√
n
EPm

0
[fm(YmS

−1
m )2|yi]1/2

√
p0,i(yi)

)
+

1

4n
EPm

0
[fm(YmS

−1
m )2|yi]p0,i(yi). (B.3)

Then, we have:
�

∥g(yi, θ0)∥1τ (yi)Rp
n,i(yi)dyi ≤ (

�
[Rm

n (YmS
−1
m )]2dYm)

1/2
(
EP0,i

[∥g(yi, θ0)∥2]1/2

+EPn,i
[∥g(yi, θ0)∥2]1/2 +

1

2
√
n
EP0,i

[
∥g(yi, θ0)∥21τ (yi)EPm

0
[fm(YmS

−1
m )2|yi]

]1/2)
+

1

4n
EP0,i

[
∥g(yi, θ0)∥1τ (yi)EPm

0
[fm(YmS

−1
m )2|yi]

]
. (B.4)

Now,
�
[Rm

n (YmS
−1
m )]2dYm =

�
[Rm

n (Xm)]
2dXm ≤ Cϱ2m,n from Lemma 1(a). To control the ex-

pectations on the RHS of (B.4), we use the Hölder inequality. Moreover, we useEPm
0
[fm(YmS

−1
m )2|yi] =

EPm
0
[fm(Xm)

2|yi] ≤ (
∑

j∈Bm
ηqj (yi))

2, where ηqj (yi) := EPm
0
[(f q

j (xj))
2|yi]1/2. Then,

EP0,i

[
∥g(yi, θ0)∥21τ (yi)EPm

0
[fm(YmS

−1
m )2|yi]

]1/2 ≤ EP0,i
[∥g(yi, θ0)∥2r̄1τ (yi)]1/(2r̄)
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EP0,i

[
EPm

0
[fm(YmS

−1
m )2|yi]r

]1/(2r)
= O(τ

(2−r)∨0
n bm,n), where r̄ > 1 is such that 1/r+1/r̄ = 1, be-

cause we have EP0,i

[
EPm

0
[fm(YmS

−1
m )2|yi]r

]1/(2r) ≤
∑

j∈Bm
EP0,i

[(ηqj (yi))
2r]1/(2r) ≤∑

j∈Bm
EQ0,j

[(f q
j (xj))

2r]1/(2r) andEP0,i
[∥g(yi, θ0)∥2r̄1τ (yi)] ≤ EP0,i

[∥g(yi, θ0)∥2r] τ 2(r̄−r)
n (we con-

sider without loss of generality r ≤ 2 for which r̄ ≥ r). Similarly, we have the bound

EP0,i

[
∥g(yi, θ0)∥1τ (yi)EPm

0
[fm(YmS

−1
m )2|yi]

]
≤ EP0,i

[∥g(yi, θ0)∥r̄1τ (yi)]1/r̄

EP0,i

[
EPm

0
[fm(YmS

−1
m )2|yi]r

]1/r
= O(τ

(3−2r)∨0
n b2m,n) (we consider r ≤ 3/2 for which r̄ ≥ 2r).

Then, from (B.4), we get:
�
∥g(yi, θ0)1τ (yi)∥Rp

n,i(yi)dyi ≤

Cϱm,n

(
1 + bm,n

n1/2 τ
(2−r)∨0
n

)
+C

b2m,n

n
τ
(3−2r)∨0
n ≤ Cϱm,n

(
1 + bm,n√

n

)
τ
(2−r)∨0
n , for any i ∈ Bm, where

the latter inequality follows from ϱm,n ≥ b2m,n

n
, and we have (2−r)∨0 ≥ (3−2r)∨0 for r > 1. Next,

we sum over i:
∑n

i=1

�
∥g(yi, θ0)∥1τ (yi)Rp

n,i(yi)dyi = O
(
τ
(2−r)∨0
n

∑Jn
m=1 ϱm,nbm,n

(
1 + bm,n√

n

))
.

Further, we use ϱm,n ≤ Cbm,n(
bm,n

n
+ 1

nα/2 ). Thus, the conclusion follows from the condition

τ
(2−r)∨0
n

n1/2

Jn∑
m=1

b2m,n

(
bm,n

n
+

1

nα/2

)(
1 +

bm,n√
n

)
= o(1). (B.5)

The LHS is bounded from below by 1
n3/2

∑Jn
m=1 b

3
m,n. If one block size bm,n grows as

√
n or faster,

we see that this lower bound does not shrink to zero. In other words, a necessary condition is

bm,n = o(
√
n), for any m. Thus, (B.5) is equivalent to τ

(2−r)∨0
n

n1/2

∑Jn
m=1 b

2
m,n

(
bm,n

n
+ 1

nα/2

)
= o(1),

which is the condition in Assumption 4 with τn = n
1

2(2r−1) log n. Indeed, we have τ
(2−r)∨0
n

n1/2 =

n−1/2+
(r−2)∨0
2(2r−1) = n−ρ, up to log terms, where ρ = 1

2
min{3

2
(1− 1

2r−1
), 1}. Q.E.D.

Proof of Lemma 2: We have 0 = lim
n→∞

1
n

∑n
i=1EPn,i

[g(yi, θn)] = lim
n→∞

1
n

∑n
i=1(EPn,i

[g(yi, θ0)] +

1√
n
EPn,i

[∂g(yi,θ0)
∂θ′

]h)+o( 1√
n
) = lim

n→∞
1
n

∑n
i=1(

�
g(yi, θ0)[pn,i(yi)−p0,i(yi)]dyi+ 1√

n
EP0,i

[∂g(yi,θ0)
∂θ′

]h)+

o( 1√
n
), from 1

n

∑n
i=1EP0,i

[g(yi, θ0)] = o( 1√
n
) and EPn,i

[∂g(yi,θ0)
∂θ

] = EP0,i
[∂g(yi,θ0)

∂θ
] + o(1). We

rewrite the first term on the RHS by using the expansion of pn,i(yi) − p0,i(yi) from Lemma 1(b),

and apply the truncation indicator 1τ (yi) = 1{∥g(yi, θ0)∥ ≤ τn}, and we get:
�
g(yi, θ0)[pn,i(yi)− p0,i(yi)]dyi =

�
g(yi, θ0)1

τ (yi)[pn,i(yi)− p0,i(yi)]dyi

+

�
g(yi, θ0)(1− 1τ (yi))[pn,i(yi)− p0,i(yi)]dyi =

1√
n
EP0,i

[g(yi, θ0)f
p
i (yi)] +

4∑
j=1

Ij,i,
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where I1,i := − 1√
n

�
g(yi, θ0)(1 − 1τ (yi))f

p
i (yi)dyi, I2,i =

�
g(yi, θ0)1

τ (yi)R
p
n,i(yi)dyi, I3,i =�

g(yi, θ0)(1−1τ (yi))pn,i(yi)dyi and I4,i = −
�
g(yi, θ0)(1−1τ (yi))p0,i(yi)dyi. We bound the sam-

ple averages of these terms. We have 1
n

∑n
i=1 I1,i = o( 1√

n
), from |I1,i| ≤ 1√

n
EP0,i

[∥g(yi, θ0)∥2r]1/(2r)

EP0,i
[(fp

i (yi))
2r]1/(2r)EP0,i

[1−1τ (yi)]
1/r̄ andEP0,i

[1−1τ (yi)] = P0,i[∥g(yi, θ0)∥ ≥ τn] ≤
EP0,i

[∥g(yi,θ0)∥2r]
τ2rn

.

From Lemma 1(b), we get 1
n

∑n
i=1 I2,i = o( 1√

n
). Moreover, |I3,i| ≤ EPn,i

[∥g(yi, θ0)∥2r]1/(2r)EPn,i
[1−

1τ (yi)]
1/q ≤ EPn,i

[∥g(yi,θ0)∥2r]

τ
2r/q
n

= O( 1
τ2r−1
n

), where 1/(2r) + 1/q = 1, which yields 1
n

∑n
i=1 I3,i =

o( 1√
n
) because τn ≫ n

1
2(2r−1) . Similarly 1

n

∑n
i=1 I4,i = o( 1√

n
). Hence, we get the condition

0 = lim
n→∞

1
n

∑n
i=1

1√
n

(
EP0,i

[g(yi, θ0)f
p
i (yi)] + EP0,i

[∂g(yi,θ0)
∂θ′

]h
)
+ o( 1√

n
), and the conclusion fol-

lows. Q.E.D.

Proof of Proposition 1: We parallel the arguments in the proof of Theorem 12.2.3 in LR. Define

ξn,i :=
√

qn,i(xi)

q0,i(xi)
− 1 and use log(1 + y) = y − 1

2
y2 + y2r(y), with r(y) → 0 if y → 0. Then, by

following the so-called Le Cam’s square root trick, we expand:

logLn,f = 2
n∑

i=1

log(1 + ξn,i) = 2
n∑

i=1

ξn,i −
n∑

i=1

ξ2n,i + 2
n∑

i=1

ξ2n,ir(ξn,i). (B.6)

We get the asymptotic behaviour of the three terms in the RHS of (B.6) in four steps. We use

the q.m.d.
√
qn,i(x)−

√
q0,i(x) =

1
2
√
n
f q
i (x)

√
q0,i(x) + Rq

n,i(x) with
∑n

i=1

�
[Rq

n,i(x)]
2dx = o(1)

from Assumption 3. Now, (i)
∑n

i=1EQ0,i
[ξn,i] = −1

8
σ(f)2 + o(1). To show this equation, we use:∑n

i=1EQ0,i
[ξn,i] =

∑n
i=1

� (√
qn,i(x)

q0,i(x)
− 1

)
q0,i(x)dx = −1

2

∑n
i=1

� (√
qn,i(x)−

√
q0,i(x)

)2

dx.

The latter quantity converges to −1
8
σ(f)2, where σ(f)2 = lim

n→∞
1
n

∑n
i=1EQ0,i

[(f q
i (xi))

2] as n→ ∞.

(ii)
∑n

i=1(ξn,i − EQ0,i
[ξn,i]) = 1

2
Zn,f + oPn

0
(1). Indeed, write ξn,i = 1

2
√
n
f q
i (xi) +

1√
n
rn,i, where

rn,i :=
√
n

Rq
n,i(xi)√
q0,i(xi)

. Then,
∑n

i=1(ξn,i − EQ0,i
[ξn,i]) = 1

2
Zn,f + 1√

n

∑n
i=1 (rn,i−

EQ0,i
[rn,i]

)
. We have 1√

n

∑n
i=1

(
rn,i − EQ0,i

[rn,i]
)
= oPn

0
(1), since this term has zero mean and

vanishing variance, due to 1
n

∑n
i=1EQ0,i

[r2n,i] =
∑n

i=1

�
[Rq

n,i(x)]
2dx = o(1). (iii)

∑n
i=1 ξ

2
n,i =

1
4
σ(f)2 + oPn

0
(1). To show this equation, we use

∑n
i=1 ξ

2
n,i =

1
4n

∑n
i=1[f

q
i (xi)]

2 + 1
n

∑n
i=1 r

2
n,i +

1
n

∑n
i=1 f

q
i (xi)rn,i. The first term in the RHS converges to 1

4
σ(f)2 under P n

0 , while the second and

third terms are oPn
0
(1), since 1

n

∑n
i=1EQ0,i

[r2n,i] = o(1). (iv) Finally,
∑n

i=1 ξ
2
n,ir(ξn,i) = oPn

0
(1)

follows by extending the arguments in LR, p. 491. From Equation (B.6) and Steps (i)-(iv), Part (a)
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follows. The Lyapunov CLT and Part (a) yield Part (b). Then, Part (c) follows from Equation (8)

and Corollary 12.3.1 in LR. To get Part (d), we project Zn,f orthogonally onto 1√
n

∑n
i=1 g(yi, θ0) =

1√
n

∑Jn
m=1(

∑
i∈Bm

g(yi, θ0)), and get covariance EPn
0

[
( 1√

n

∑n
i=1 g(yi, θ0))Zn,f

]
= 1

n

∑Jn
m=1EPm

0

[
(
∑

i∈Bm
g(yi, θ0))fm(YmS

−1
m )

]
= 1

n

∑Jn
m=1

∑
i∈Bm

EPm
0
[g(yi, θ0)fm(YmS

−1
m )] =

1
n

∑Jn
m=1

∑
i∈Bm

EPm
0

[
g(yi, θ0)EPm

0
[fm(YmS

−1
m )|yi]

]
= 1

n

∑n
i=1EP0,i

[g(yi, θ0)f
p
i (yi)] , where we

use the Law of iterated expectation and the definition of fp
i in Lemma 1(c). By taking the limit

for n → ∞, and using Lemma 2, we get lim
n→∞

EPn
0

[
( 1√

n

∑n
i=1 g(yi, θ0))Zn,f

]
= −J0h. Then, rep-

resenting Zn,f as the sum of its orthogonal projection onto 1√
n

∑n
i=1 g(yi, θ0) plus the remainder

term, we get Zn,f = h′Z∗
n+Zn,⊥+ oPn

0
(1). Asymptotic normality of Z∗

n follows from Assumption

5. Moreover, by orthogonality, we have σ(f)2 = h′Σ−1
0 h + σ2

⊥, where EPn
0
[(Z⊥

n )
2] = σ2

⊥ + o(1),

and we deduce the stated asymptotic representation of the log likelihood ratio. Q.E.D.

Proof of Proposition 2: As in the proof of Theorem 13.5.4 in LR, we argue by contradiction.

Thus, suppose there exists a subsequence nj such that:

lim
j→∞

inf{βnj ,f (ϕnj
) : h′A′(AΣ0A

′)−1Ah ≥ λ2nc} > 1− Fχ2(r,λ2
nc)

(cr,1−α). (B.7)

From (12), there exists a further subsequence such that, for any h, βnjm ,f (ϕnjm
) → β(h) :=

Eh[ϕ̃(Z̃)], for a test ϕ̃ in the Gaussian experiment Z̃ ∼ N (h,Σ0). Then, Inequality (B.7) implies

that, for any h such that h′A′(AΣ0A
′)−1Ah ≥ λ2nc, we have β(h) > 1− Fχ2(r,λ2

nc)
(cr,1−α), so that

inf{β(h) : h′A′(AΣ0A
′)−1Ah ≥ λ2nc} > 1− Fχ2(r,λ2

nc)
(cr,1−α). (B.8)

The strict inequality in (B.8) contradicts the power of the maximin test of the linear hypothesis

Ah = 0 being equal to, and not above, 1 − Fχ2(r,λ2
nc)

(cr,1−α) in the Gaussian experiment Z̃ ∼

N (h,Σ0), as stated in the next lemma.

Lemma 3 Consider the Gaussian experiment Z̃ ∼ N (h,Σ0) with unknown mean h ∈ Rp and

given covariance matrix Σ0, and consider the null hypothesis Ah = 0 against the alternative

h′A′(AΣ0A
′)−1Ah ≥ λ2nc, where A is a full row-rank matrix of rank r, and λ2nc > 0 is a constant.
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We have that (a) the test ϕ(Z̃) = {Z̃ ′A′(AΣ0A
′)−1AZ̃ > cr,1−α} is maximin at level α, for α ∈

(0, 1), and (b) the maximin power of the above test is 1− Fχ2(r,λ2
nc)

(cr,1−α).

Then, Inequality (B.7) cannot be true and the conclusion follows. Q.E.D.

Proof of Lemma 3: Define the random vector Z = (Z ′
1, Z

′
2)

′ in Rr × Rp−r, where Z1 = AZ̃ and

Z2 = BΣ−1
0 Z̃, with a (p − r) × p full row-rank matrix B such that AB′ = 0, i.e., the rows of B

span the kernel of A. Then, Z ∼ N (η,Ω), where η = (η′1, η
′
2)

′ with η1 = Ah and η2 = BΣ−1
0 h,

and matrix Ω is block-diagonal with diagonal blocks Ω11 = AΣ0A
′ and Ω22 = BΣ−1

0 B′. The two

Gaussian components Z1 and Z2 are independent since Cov(Z1, Z2) = AB′ = 0. For a given Σ0,

testing the linear hypothesis Ah = 0 in the Gaussian experiment Z̃ ∼ N (h,Σ0) is tantamount to

testing η1 = 0 in the Gaussian experiment Z ∼ N (η,Ω). Vector Z1 is a sufficient statistic for η1,

so that we can focus on tests built on Z1 ∼ N (η1,Ω11). Problem 8.29 in LR states that the test

which rejects when Z ′Ω−1
11 Z > cr,1−α is maximin for testing η1 = 0 against η′1Ω

−1
11 η1 ≥ λ2nc at

level α, and the maximin power is 1 − Fχ2(r,λ2
nc)

(cr,1−α). Since Z ′Ω−1
11 Z = Z̃ ′A′(AΣ0A

′)−1AZ̃

and η′1Ω
−1
11 η1 = h′A′(AΣ0A

′)−1Ah, the conclusion follows. Q.E.D.

C Spectral Characterisation of Spherical Models

Lemma 4 characterizes spherical models through a plateau in the spectrum of Σ = FF ′ + Vε.

Lemma 4 A symmetric positive-definite T × T matrix Σ admits the representation Σ = FF ′ +

σ̄2IT , with a T × k matrix F and σ̄2 > 0, if, and only if, the T − k smallest eigenvalues of Σ are

equal to σ̄2.

Corollary 2 The spherical models with k latent factors are a strict subset of the general specifi-

cations, if, only if, k ≤ T − 2.

In other words, we can always write any matrix Σ symmetric and positive-definite as FF ′ +

σ̄2IT with a T × k matrix F , for k = T − 1 (or k = T ), while it is not the case with the restriction
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k ≤ T−2. Hence, it is meaningful to talk about a spherical model only for k ≤ T−2. Importantly,

some models with Vε ̸= σ̄2IT admit a spherical representation with a larger number of factors. For

instance, suppose that Σ = FF ′ + Vε, where the diagonal elements of Vε are all equal to σ̄2 except

for date t, where Vε,tt = σ2
1 , with σ2

1 > σ̄2. Then, we have Vε = σ̄2IT + η
2ete

′
t, with η2 := σ2

1 − σ̄2.

It follows that Σ = F̃ F̃ ′ + σ̄2IT , with F̃ := [F : ηet]C and C an orthogonal matrix such that F̃ ′F̃

is diagonal. Hence, we have a model with k + 1 factors and spherical errors.

Proof of Lemma 4: Suppose first that Σ = FF ′ + σ̄2IT , for a T × k matrix F and σ̄2 > 0.

Let µj ≥ 0, for j = 1, ..., k, be the eigenvalues of matrix FF ′. Then, the eigenvalues of Σ

are δj = µj + σ̄2, for j = 1, ..., k, and δj = σ̄2, for j = k + 1, ..., T . Conversely, let Σ =∑T
j=1 δjPj be the spectral decomposition of Σ with eigenvalues δj ranked in decreasing order,

and eigenprojectors Pj , and suppose that δj = σ̄2 > 0, for j = k + 1, ..., T . Then, we have

Σ =
∑k

j=1 δjPj + σ̄2
∑T

j=k+1 Pj =
∑k

j=1(δj − σ̄2)Pj + σ̄2
∑T

j=1 Pj . We have
∑T

j=1 Pj = IT .

Moreover,
∑k

j=1(δj − σ̄2)Pj is a positive semi-definite matrix of rank k and hence we can write it

as
∑k

j=1(δj − σ̄2)Pj = FF ′, for a T × k matrix F . Thus, we get Σ = FF ′ + σ̄2IT . Q.E.D.

D Characterisation of FA-GMM Estimators

Appendix E in the Online Appendix (OA) provides the detailed proofs of technical Lemmas 5-8

below supporting the computations of this appendix.

D.1 Unconstrained FA-GMM Estimator

The FA-GMM estimator is θ̂ = (µ̂′, ϑ̂′)′ = argmin
θ∈Θ

Qn(θ), where Qn(θ) = ĝn(θ)
′V̂ −1

g ĝn(θ).

The condition θ ∈ Θ imposes the normalization constraint F ′V −1
ε F being diagonal, that we

rewrite as h(ϑ) = 0, where h(ϑ) is the ρ × 1 vector stacking the unique off-diagonal elements

{(F ′V −1
ε F )i,j}i<j , with ρ := k(k − 1)/2.

a) Consistency. From Assumptions 1, 2, A.1 and A.2, V̂y
p→ V 0

y = Σ(ϑ0) = F0F
′
0+V

0
ε and ȳ

p→ µ0
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(see Lemma 5 in FGS). Then, ĝn(θ)
p→ g∞(θ) := [(µ0 − µ)′, vech(Σ(ϑ0)− Σ(ϑ) + µ0µ

′
0 − µµ′)]′

uniformly in θ ∈ Θ. By the consistency of V̂g under Assumptions 1-2, A.1-A.4, and A.7 shown in

Section D.3, we get that the criterion Qn(θ) converges in probability uniformly to Q∞(θ) :=

g∞(θ)′V −1
g g∞(θ). The global identification condition in Assumption A.3 implies that Q∞ is

uniquely minimized over compact set Θ at true parameter value θ0. Then, standard results for

extremum estimators (see e.g. Newey and McFadden (1994)) yield consistency of θ̂.

b) Asymptotic normality. The First-Order Conditions (FOC) for the FA-GMM estimator yield

∂ĝn(θ̂)
′

∂θ
V̂ −1
g ĝn(θ̂) = 0, h(ϑ̂) = 0. (D.1)

The Lagrange multipliers vector associated to the factor normalization is equal to zero, because

the criterion Qn(θ) is invariant under rotations of the columns of F . Let us define matrix J0 :=

plim ∂ĝn(θ0)
∂θ′

= [Jµ,0 : Jϑ,0] in block form, and let the pϑ × ρ matrix H := ∂h(ϑ0)′

∂ϑ
be full-rank, with

pϑ := (k + 1)T . We apply the mean-value theorem to system (D.1) around θ̃0. By the consistency

of estimator θ̂ proved in part (a), and the normalization h(ϑ̃0) = 0, we get:

J ′
0V

−1
g

√
nĝn(θ̃0) + J ′

0V
−1
g J0

√
n(θ̂ − θ̃0) = op(1), (D.2)

H ′√n(ϑ̂− ϑ̃0) = op(1). (D.3)

Let LH be a full-rank p×p̃matrix, such thatMH := Ip−H(H ′H)−1H ′ = LHL
′
H and L′

HLH = Ip̃,

namely LH is the matrix of standardized eigenvectors of MH for the p̃ := p − ρ unit eigenvalues.

Then, using J0
√
n(θ̂ − θ̃0) = Jµ,0

√
n(µ̂ − µ0) + Jϑ,0LH

√
nL′

H(ϑ̂ − ϑ̃0) + op(1) from (D.3), and

inserting this equation into (D.2), we get the asymptotic expansion: √
n(µ̂− µ0)

√
nL′

H(ϑ̂− ϑ̃0)

 = −(J̃ ′
0V

−1
g J̃0)

−1J̃ ′
0V

−1
g

√
nĝn(θ̃0) + op(1), (D.4)

where matrix J̃0 := [Jµ,0 : Jϑ,0LH ] is full column-rank under the local identification condition in

Assumption A.4, as we show next.

Lemma 5 Matrix J̃0 is full column-rank if, and only if, Assumption A.4 holds.
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To interpret Equation (D.4), note that there exists a smooth one-to-one change of parameters

ϑ = ϕ(h, η) locally around ϑ0, where h ∈ Rρ is the parameter vector that corresponds to rotations

of the latent factor matrix, with true value h0 = 0 under our normalization, and vector η ∈ Rp̃

parametrizes the remaining degrees of freedom, with true value η0. Let LH := ∂ϕ(0,η0)
∂η′

. Then,

L′
HH = 0. We can choose this change of parameters such that L′

HLH = Ip̃. Then, we have

L′
H(ϑ − ϑ0) = η − η0 locally around ϑ0. Hence, the lower block in (D.4) is the asymptotic

expansion for the estimator of the free parameters invariant to factor rotations, and the full-rank

of matrix J̃0 corresponds to the standard GMM local identification condition with the transformed

parameters. By using
√
nĝn(θ̃0) ⇒ N (0, Vg) under Assumptions 1-2, A.1, A.2, A.5, and A.7

(see Section D.3 for the proof), we get (
√
n(µ̂ − µ0)

′, [
√
nL′

H(ϑ̂ − ϑ̃0)]
′)′ ⇒ N (0, Σ̃0), where

Σ̃0 := (J̃ ′
0V

−1
g J̃0)

−1 =

 Σ̃µµ,0 Σ̃µη,0

Σ̃ηµ,0 Σ̃ηη,0

 in a block form. Then, the Asymptotic Variance (AV)

is

AV

 √
n(µ̂− µ0)

√
n(ϑ̂− ϑ̃0)

 =

 Σ̃µµ,0 Σ̃µη,0L
′
H

LHΣ̃ηµ,0 LHΣ̃ηη,0L
′
H

 . (D.5)

The asymptotic variance of block
√
n(ϑ̂ − ϑ̃0) in (D.5) is degenerate because of the factor nor-

malization. The asymptotic variances of components
√
nvec(F̂ − F0) and

√
ndiag(V̂ε − Ṽε) are

the upper-left (kT ) × (kT ) and lower-right T × T blocks ΣF = (LHΣ̃ηη,0L
′
H)11 and ΣVε =

(LHΣ̃ηη,0L
′
H)22. Let us now obtain explicitly matrices J0 and H . We compute the partial deriva-

tives of the moment vector, and use Lemma 6 below as well as vech(Vε) = (Ediag,T )diag(Vε),

where

Ediag,T := 1√
2
[IT : 0

T×T (T−1)
2

]′. We get: J0 = −

 IT 0T×(kT ) 0T×T

∂vech(µµ′)
∂µ′

∂vech(FF ′)
∂vec(F )′

∂vech(Vε)
∂diag(Vε)′


= −

 IT 0T×(kT ) 0T×T

A′
T (µ⊗ IT ) A′

T (F ⊗ IT ) Ediag,T

 . Here, we use the link vec(Z) = ATvech(Z),

where AT is the T 2 × 1
2
T (T +1) duplication matrix (Magnus and Neudecker (2007)) suited to our

definition of the half-vectorization operator vech. With ei being the ith unit vector in dimension

T , it is given by AT =
[√

2(e1 ⊗ e1) : · · · :
√
2(eT ⊗ eT ) : {ei ⊗ ej + ej ⊗ ei}i<j

]
.
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Lemma 6 Let C be a T × s matrix. Then, we get ∂vech(CC′)
∂vec(C)′

= A′
T (C ⊗ IT ).

Concerning matrix H , let us write h(ϑ) = Eoff,kvech(F
′VεF ), where Eoff,k = [0ρ×k : Iρ] is

the matrix that selects the lower ρ× 1 block in a (k+ρ)× 1 vector. Moreover, F ′ = [f1 : · · · : fT ],

vec(F ′)′ = (f ′
1, ..., f

′
T ), vech(F

′V −1
ε F ) =

∑T
s=1

1
Vε,ss

vech(fsf
′
s). Then, using Lemma 6, we get

∂vech(F ′V −1
ε F )

∂f ′
t

= 1
Vε,tt

A′
k(ft ⊗ Ik), which yields ∂vech(F ′V −1

ε F )
∂vec(F ′)′

= A′
k[(F

′V −1
ε ) ⊗ Ik]. The chain

rule gives: ∂vech(F ′V −1
ε F )

∂vec(F )′
= ∂vech(F ′V −1

ε F )
∂vec(F ′)′

∂vec(F ′)
∂vec(F )′

= A′
k[(F

′V −1
ε ) ⊗ Ik]KT,k = A′

kKk,k[(F
′V −1

ε ) ⊗

Ik]KT,k = A′
k[Ik ⊗ (F ′V −1

ε )]. Moreover, using vech(F ′V −1
ε F ) =

∑T
s=1

1
2Vε,ss

A′
k(fs ⊗ fs), we

get ∂vech(F ′V −1
ε F )

∂Vε,tt
= − 1

2V 2
ε,tt
A′

k(ft ⊗ ft), which yields: ∂vech(F ′V −1
ε F )

∂diag(Vε)′
= −1

2
A′

k[(F
′V −1

ε ) ⊗col

(F ′V −1
ε )], where C ⊗col C := [(c1 ⊗ c1) : · · · (cT ⊗ cT )] denotes ’columnwise’ Kronecker

product of a matrix C = [c1 : · · · : cT ]. By putting all together, we get: H ′ = ∂h(ϑ0)
∂ϑ′ =

Eoff,kA
′
k

[
Ik ⊗ (F ′V −1

ε ) : −1
2
(F ′V −1

ε )⊗col (F
′V −1

ε )
]
.

D.2 Constrained FA-GMM Estimator under Sphericity

The constrained FA-GMM estimator is θ̂c = (µ̂c′, ϑ̂c′)′ = argmin
θ∈Θ

Qn(θ) subject to a(θ) = 0,

where a(θ) := L′
1T
diag(Vε) and M1T = L1TL

′
1T

. Consistency of θ̂c under the null hypothesis

follows from the arguments in Section D.1 by rewriting the constraint as θ ∈ Θ0 = {θ ∈ Θ :

a(θ) = 0}, i.e. a compact set that contains the true value.

By the mean-value theorem, and consistency of θ̂c under the null hypothesis, we get from the

FOC with λ̂ being the (T − 1)× 1 vector of Lagrange multipliers for the constraint a(θ) = 0:

J ′
µ,0V

−1
g

√
nĝn(θ̃0) + J ′

µ,0V
−1
g J0

√
n(θ̂c − θ̃0) = op(1), (D.6)

J ′
ϑ,0V

−1
g

√
nĝn(θ̃0) + J ′

ϑ,0V
−1
g J0

√
n(θ̂c − θ̃0) +

√
n
∂a(θ0)

′

∂ϑ
λ̂ = op(1), (D.7)

H ′√n(ϑ̂c − ϑ̃0) = op(1), (D.8)
∂a(θ0)

∂ϑ′

√
n(ϑ̂c − ϑ̃0) = op(1), (D.9)

where ∂a(θ0)
∂µ′ = 0 and ∂a(θ0)

∂ϑ′ =
[
0(T−1)×(Tk) : L′

1T

]
, and we separate in Equations (D.6) and (D.7)

the FOC for the µ and ϑ components. We use J0
√
n(θ̂c− θ̃0) = Jµ,0

√
n(µ̂c−µ0)+J̃ϑ,0

√
nL′

H(ϑ̂
c−
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θ̃0) + op(1) in (D.6) and (D.7), where J̃ϑ,0 := Jϑ,0LH , and
√
n(ϑ̂c − ϑ0) = LH

√
nL′

H(ϑ̂
c − ϑ̃0) +

op(1) in (D.9), and left-multiply (D.7) times L′
H , so that we can write an expression in a block

form: J̃ ′
0V

−1
g J̃0 Ã

Ã′ 0(T−1)×(T−1)




 √
n(µ̂c − µ0)

√
nL′

H(ϑ̂
c − ϑ̃0)


√
nλ̂

 = −

 J̃ ′
0V

−1
g

√
nĝn(θ̃0)

0

+ op(1),

(D.10)

where Ã′ =
[
0(T−1)×T : ∂a(θ0)

∂ϑ′ LH

]
=

[
0(T−1)×T : L′

1T
L̃H

]
and L̃H is the lower T × p̃ block

of LH . The derivation of the joint asymptotic distribution of the constrained FA-GMM esti-

mator and the Lagrange multiplier vector continues along the lines of standard theory (see e.g.

Newey and McFadden (1994)). By inversion of the block matrix on the LHS of Equation (D.10),

we have:


 √

n(µ̂c − µ0)
√
nL′

H(ϑ̂
c − ϑ̃0)


√
nλ̂

 ⇒ N

 0

0

 ,
 (I − P )′Σ̃0(I − P ) Γ0

Γ′
0 (Ã′Σ̃0Ã)

−1

 ,

where Γ0 = (I − P )′Σ̃0Ã(Ã
′Σ̃0Ã)

−1, Σ̃0 := (J̃ ′
0V

−1
g J̃0)

−1 is the asymptotic variance of the

unconstrained FA-GMM estimator, and P = Ã(Ã′Σ̃0Ã)
−1Ã′Σ̃0 is the oblique projection ma-

trix onto the columns of matrix Ã w.r.t. the scalar product induced by matrix Σ̃0. In particu-

lar, the asymptotic variance of the Lagrange multipliers vector is AV (
√
nλ̂) = (Ã′Σ̃0Ã)

−1 =

(L′
1T
L̃HΣ̃ηη,0L̃

′
HL1T )

−1 = (L′
1T
AV [

√
ndiag(V̂ε − Ṽε)]L1T )

−1, where AV [
√
ndiag(V̂ε − Ṽε)] =

(LHΣ̃ηη,0L
′
H)22 is the lower T × T block of matrix LHΣ̃ηη,0L

′
H from (D.5).

D.3 Feasible CLT for the Sample Orthogonality Vector

The next lemma establishes the asymptotic normality of the sample orthogonality vector in the FA

model, namely that Assumption 5 holds in our FA-GMM setting.

Lemma 7 Under Assumptions 1-2, A.1, A.2, A.5, and A.7, as n→ ∞ we have 1√
n

∑n
i=1 g(yi, θ̃0) ⇒

N (0, Vg), with Vg =

 qBVε [(Q′
B,1F ′

0)⊗ Vε]AT

A′
T [(F0QB,1)⊗ Vε] A′

T [(F0QBF ′
0)⊗ Vε]AT + ΩZ

 , where F0 :=
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[µ0 : F0], QB := lim 1
n
B′Σ̌B with B = [1n : β], qB := lim 1

n
1′nΣ̌1n, and QB,1 := lim 1

n
B′Σ̌1n.

Moreover, ΩZ = 1
4
[A′

T (V
1/2
ε ⊗ V

1/2
ε )AT ](D + κIT (T+1)

2

)[A′
T (V

1/2
ε ⊗ V

1/2
ε )AT ] is the asymptotic

variance of the vech of Zn =
√
n( 1

n
εε′ − E[ 1

n
εε′]).

The asymptotic variance matrix Vg involves the FA parameters vector θ, asymptotic variance

matrix ΩZ , and matrix QB. The PML estimator of FGS, for example, yields a preliminary con-

sistent estimator of θ. We can follow FGS, Section E.5., to get a consistent estimator of ΩZ . We

establish below a consistent estimator of QB. Then, we get a consistent estimator V̂g by plug-in.19

Let Ψ̂B := 1
n

∑
m

∑
i,j∈Bm

(B̂iB̂′
j)⊗(ε̂iε̂

′
j), where B̂i = (1, β̂′

i)
′ with β̂i = (F̂ ′V̂ −1

ε F̂ )−1F̂ ′V̂ −1
ε (yi−

µ̂) and ε̂i =MF̂ ,V̂ε
(yi − µ̂), where µ̂, F̂ , V̂ε are preliminary root-n consistent estimators, e.g. from

PML or FA-GMM with identity weighting matrix. Further, let B̂B := (NF̂ ,V̂ε
⊗MF̂ ,V̂ε

)AT Ω̂ZA
′
T

(N ′
F̂ ,V̂ε

⊗M ′
F̂ ,V̂ε

), where NF,Vε :=

 01×T

(F ′V −1
ε F )−1F ′V −1

ε

. In Lemma 8 below, we show:

Ψ̂B − B̂B = QB ⊗ (MF,VεVε) + op(1). (D.11)

By half-vectorizing this equation, solving for QB by Least Squares projection and using a consis-

tent estimator for MF,VεVε, we get a consistent estimator for QB.

Lemma 8 Define the symmetric matrix Q̂B via vech(Q̂B) = (P̂ ′P̂ )−1P̂ ′vech(Ψ̂B − B̂B), where

P̂ = 1
2
A′

T (k+1)

(
Ik+1 ⊗

[
(KT,k+1 ⊗ IT )⊗ (Ik+1 ⊗ vec(MF̂ ,V̂ε

V̂ε))
])
AT (k+1). Then, under As-

sumptions 1-2, A.1-A.4, and A.7, estimator Q̂B is consistent for QB.

19A nonparametric strategy based on the averaging 1
n

∑
m ĝm,nĝ

′
m,n with ĝm,n =

∑
i∈Bm

g(yi, θ̂) does not work

here since the within-block averages β̄m,n = 1
bm,n

∑
i∈Bm

βi and V̄β,m,n − Ik = 1
bm,n

∑
i∈Bm

(βiβ
′
i − Ik) do not

necessarily vanish despite the full-sample normalizations β̄ = 0 and Ṽβ = Ik. It again exemplifies the difficulty to

allow for cross-sectional dependence.
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Figure 1: We display the values for the statistic ξWn for the subperiods from January 1963 to December

2021. We partition the sample into 35 nonoverlapping windows of T = 20 months. The red horizontal

segments indicate the estimated number k̂ of factors. The red dotted line corresponds to the critical value of

a χ2(19) distribution at significance level 5%/35. Grey shaded vertical bars flag bear market phases.
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ONLINE APPENDIX

Optimal Maximin GMM Tests for Sphericity

in Latent Factor Analysis of Short Panels

Alain-Philippe Fortin, Patrick Gagliardini, and Olivier Scaillet

Appendix E provides the detailed proofs of technical Lemmas 5-8 supporting the computations of

Appendix D. In Appendix F, we outline an asymptotically equivalent FA-GMM estimator, which

is easier to compute numerically. It relies on modified moment restrictions. We also explain how

we can compute numerically the unconstrained and constrained estimators via Newton-Raphson

and zigzag algorithms and provide a numerical study of their estimation performance. Appendix

G gathers the Monte Carlo results on size and power for the LM and LR tests. Appendix H

makes the link with the panel model of Chamberlain (1992) Section 4 and discusses how we can

incorporate second-order moment information in sets of orthogonality restrictions for that model

as in Arellano and Bonhomme (2012) Section 3.4 and our FA setting. Appendix I gives the detailed

proof of Proposition 3.

E Proofs of Lemmas 5-8

Proof of Lemma 5: From Lemma 6 in FGS, Assumption A.4 is equivalent to non-singularity of

matrix L′
H

∂2L0(ϑ0)
∂ϑ∂ϑ′ LH , where L0(ϑ) = −1

2
log |Σ(ϑ)| − 1

2
Tr(V 0

y Σ(ϑ)
−1) =: L (Σ(ϑ)) is the pop-

ulation criterion of PML. We have ∂2L0(ϑ0)
∂ϑ∂ϑ′ = ∂vech(Σ(ϑ0))′

∂ϑ
∂2L (Σ(ϑ0))

∂vech(Σ)∂vech(Σ)′
∂vech(Σ(ϑ0))

∂ϑ′ . To compute

the second-order derivatives, we use matrix differentials (Magnus and Neudecker (2007), Chapter

6). We have dL = −1
2
Tr(Σ−1dΣ)+1

2
Tr(V 0

y Σ
−1(dΣ)Σ−1) and d2L = 1

2
Tr(Σ−1(dΣ)Σ−1(dΣ))−

Tr(V 0
y Σ

−1(dΣ)Σ−1(dΣ)Σ−1). By evaluating the differential at Σ = Σ(ϑ0) = V 0
y , we get d2L =

−1
2
Tr((dΣ)(V 0

y )
−1(dΣ)(V 0

y )
−1) = −1

2
vec(dΣ)′[(V 0

y )
−1 ⊗ (V 0

y )
−1]vec(dΣ), which yields

∂2L (Σ(ϑ0))
∂vech(Σ)∂vech(Σ)′

= −A′
T [(V

0
y )

−1 ⊗ (V 0
y )

−1]AT . Thus, matrix L′
H

∂2L0(ϑ0)
∂ϑ∂ϑ′ LH = −L′

H
∂vech(Σ(ϑ0))′

∂ϑ
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A′
T [(V

0
y )

−1⊗ (V 0
y )

−1]AT
∂vech(Σ(ϑ0))

∂ϑ′ LH is non-singular if, and only if, matrix ∂vech(Σ(ϑ0))
∂ϑ′ LH is full

rank. Moreover, J̃0 = −

 IT 0T×(k+1)T

∂vech(µµ′)
∂µ′

∂vech(Σ(ϑ0))
∂ϑ′ LH

 is full-rank if, and only if, ∂vech(Σ(ϑ0))
∂ϑ′ LH

is full rank. The conclusion follows. Q.E.D.

Proof of Lemma 6: Let us write C = [c1 : · · · : cs], vec(C)′ = (c′1, ..., c
′
s) and CC ′ =∑s

j=1 cjc
′
j , where the cj are the columns of matrix C. Then, vech(CC ′) = 1

2
A′

Tvec(CC
′) =

1
2

∑s
j=1A

′
T (cj ⊗ cj), and ∂vech(CC′)

∂c′j
= 1

2
A′

T
∂(cj⊗cj)

∂c′j
= 1

2
A′

T [IT ⊗ cj + cj ⊗ IT ] = A′
T (cj ⊗ IT ).

For the latter equality, we use that A′
T (IT ⊗ cj) = A′

TKT,T (IT ⊗ cj)KT,1 = A′
T (cj ⊗ IT ) by the

properties of the commutation matrices. The conclusion follows. Q.E.D.

Proof of Lemma 7: We use ȳ = µ0 +
1√
n
un and V̂y = Ṽy + 1√

n
Ψy + op(

1√
n
) under As-

sumptions 1, 2, A.1, A.2, where un :=
√
nε̄, Ṽy = F0F

′
0 + Ṽε = Σ(ϑ̃0) and Ψy = WnF

′
0 +

F0W
′
n + Zn, with Wn = 1√

n
εβ and Zn =

√
n( 1

n
εε′ − Ṽε), and ϑ̃0 = (vec(F0)

′, diag(Ṽε)
′)′

for Ṽε := 1
n
E[εε′] (see FGS Lemma 5). Then, we get the asymptotic expansion

√
nĝn(θ̃0) =

[u′n, vech(WnF
′
0 + F0W

′
n + Zn + unµ

′
0 + µ0u

′
n)

′]′+op(1) = [u′n, vech(WnF ′
0 + F0W ′

n + Zn)
′]′+

op(1), where Wn := 1√
n
εB = [un : Wn]. Under Assumptions 1-2, A.1, A.2, A.5, and A.7, by Lem-

mas 2 and 7 in FGS generalized to accommodate any r > 1 replacing the condition r = 2 (see be-

low for details), we have un ⇒ u, Wn ⇒ W and Zn ⇒ Z, where vectors vec(W) and vech(Z) are

jointly Gaussian, and u is the upper T × 1 block of vec(W). Then, we get
√
nĝn(θ̃0) ⇒ N (0, Vg),

where Vg is the variance of Gaussian vector [u′, vech(WF ′
0 + F0W ′ + Z)′]′.

Let us now characterize matrix Vg explicitly. We have vech(WF ′
0) = 1

2
A′

Tvec(WF ′
0) =

1
2
A′

T (F0 ⊗ IT )vec(W), and vech(F0W ′) = 1
2
A′

Tvec(F0W ′) = 1
2
A′

T (IT ⊗ F0)vec(W ′)

= 1
2
A′

T (IT ⊗F0)KT,kvec(W) = 1
2
A′

TKT,T (IT ⊗F0)KT,kvec(W) = 1
2
A′

T (F0⊗ IT )vec(W), using

properties of the commutation matrices Kp,q and matrix AT . Thus, we have vech(WF ′
0+F0W ′+

Z) = A′
T (F0 ⊗ IT )vec(W) + vech(Z). Moreover, vech(Z) = 1

2
[A′

T (V
1/2
ε ⊗ V

1/2
ε )AT ]vech(Z),

where Z := V
−1/2
ε ZV

−1/2
ε . Under Assumptions 1-2, A.1, A.2, A.5, and A.7, Lemmas 1 and 7 in

FGS imply that vec(W) ∼ N (0,ΩW) and vech(Z) ∼ N (0,ΩZ) are mutually independent, with
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ΩW = QB ⊗ Vε and ΩZ = D + κIT (T+1)
2

, which yields the statement in Lemma 7.

To conclude, we detail here the verification of the Liapunov condition in the CLT for Zn. Let

Zn := V
−1/2
ε ZnV

−1/2
ε = 1√

n

∑Jn
m=1 ζm,n, where the elements of the T × T simmetric matrix

ζm,n are ζtsm,n =
∑

i∈Bm
(wi,twi,s − 1t,s)σ̌ii +

∑
i,j∈Bm,i ̸=j wi,twj,sσ̌ij =: ζa,tsm,n + ζb,tsm,n. Moreover,

V [vech(Zn)] =
1
n

∑Jn
m=1 V [vech(ζm,n)] = Dn + κnIT (T+1)

2

= Ωn. The multivariate Liapunov

condition is ∥Ω−1/2
n ∥2r 1

nr

∑Jn
m=1E[∥vech(ζm,n)∥2r] = o(1), for r > 1. Because the eigenvalues

of matrix Ωn are bounded away from zero uniformly in n under Assumption A.5, and we have

∥x∥2r ≤ kr−1
∑k

j=1 |xj|2r for a vector x ∈ Rk and r > 1, by the triangular inequality it is enough

to show that: (a) 1
nr

∑Jn
m=1E[|ζa,tsm,n|2r] = o(1), and (b) 1

nr

∑Jn
m=1E[|ζb,tsm,n|2r] = o(1), for any t, s.

To prove (a), we write ζa,tsm,n =
∑

i∈Bm
ζi as a sum of independent variables ζi := (wi,twi,s −

1t,s)σ̌ii with mean zero and E[|ζi|2r] < ∞ for r > 1 (we omit indices t, s to ease notation). The

Marcinkiewicz and Zygmund (1937) inequality yields E[|
∑

i∈Bm
ζi|2r] ≤ Cr(

∑
i∈Bm

E[|ζi|2])r,

for a constant Cr that depends on r > 1 only. Under our assumptions, we get E[|
∑

i∈Bm
ζi|2r] =

O(brm,n) uniformly in m, which yields 1
nr

∑Jn
m=1E[|ζa,tsm,n|2r] = O( 1

nr

∑Jn
m=1 b

r
m,n) = o(1) from

Assumption 2 d).

Let us now show bound (b). If the random variables wi,t are symmetric, it can be established

by bounds for higher-order moments of U-statistics in McConnell and Taqqu (1986). We ex-

tend to possibly non-symmetric variables next. First, by using the equality
∑

i,j∈Bm,i ̸=j wi,twj,sσ̌ij

= 1
2

(∑
i,j∈Bm,i ̸=j(wi,t + wi,s)(wj,t + wj,s)σ̌ij −

∑
i,j∈Bm,i ̸=j wi,twj,tσ̌ij −

∑
i,j∈Bm,i ̸=j wi,swj,sσ̌ij

)
,

it is enough to get bounds for E[|
∑

i,j∈Bm,i ̸=j wiwjσ̌ij|2r] for either wi = wi,t, or wi = wi,t + wi,s,

for any t, s with t ̸= s. Note that those variables have zero mean and variance σ2 = E[w2
i ]

that is either 1, or 2. Second, we use the decoupling result in de la Pena (1992), Theorem 1, which

yieldsE[|
∑

i,j∈Bm,i ̸=j wiwjσ̌ij|2r] ≤ 82rE[|
∑

i,j∈Bm,i ̸=j wiw̃jσ̌ij|2r], where the w̃j are independent

copies of the wj . Next, we use an argument similar to the proof of Proposition 2.1 in Giné, Latala

and Zinn (2000). Write
∑

i,j∈Bm,i ̸=j wiw̃jσ̌ij =
∑

i∈Bm
ζi, where ζi := wi(

∑
j∈Bm,j ̸=i w̃jσ̌ij),

and E[|
∑

i,j∈Bm,i ̸=j wiw̃jσ̌ij|2r] = E
[
Ẽ[|

∑
i∈Bm

ζi|2r]
]

by the law of iterated expectation, where

Ẽ[·] denotes expectation conditional on {w̃j, j = 1, ..., n}. The ζi are independent conditional
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on {w̃j, j = 1, ..., n}, with conditional expectation Ẽ(ζi) = 0 and conditional second mo-

ment Ẽ(ζ2i ) = σ2(
∑

j∈Bm,j ̸=i w̃jσ̌ij)
2. Then, the Marcinkiewicz and Zygmund (1937) inequal-

ity yields Ẽ[|
∑

i∈Bm
ζi|2r] ≤ Crσ

2r(
∑

i∈Bm
(
∑

j∈Bm,j ̸=i w̃jσ̌ij)
2)r. From the discrete Hölder in-

equality we have (
∑

i∈Bm
(
∑

j∈Bm,j ̸=i w̃jσ̌ij)
2)r ≤ (bm,n)

r−1
∑

i∈Bm
(
∑

j∈Bm,j ̸=i w̃jσ̌ij)
2r. Now,

by taking the expectation with respect to variables {w̃j, j = 1, ..., n}, and using once more

the Marcinkiewicz and Zygmund (1937) inequality, we get E[(
∑

i∈Bm
(
∑

j∈Bm,j ̸=i w̃jσ̌ij)
2)r] ≤

(bm,n)
r−1

∑
i∈Bm

E[(
∑

j∈Bm,j ̸=i w̃jσ̌ij)
2r] ≤ (bm,n)

r−1Crσ
2r
∑

i∈Bm
(
∑

j∈Bm,j ̸=i σ̌
2
ij)

r. By com-

bining the inequalities obtained so far, we get E[|
∑

i,j∈Bm,i ̸=j wiwjσ̌ij|2r] ≤ C2
r (8σ

2)2r(bm,n)
r−1∑

i∈Bm
(
∑

j∈Bm,j ̸=i σ̌
2
ij)

r. Because
∑

j∈Bm,j ̸=i σ̌
2
ij = O((bm,n)

δ̌) uniformly in i, we get

E[|
∑

i,j∈Bm,i ̸=j wiwjσ̌ij|2r] = O(b
r(1+δ̌)
m,n ). Hence, 1

nr

∑Jn
m=1E[|ζb,tsm,n|2r] = O( 1

nr

∑Jn
m=1 b

r(1+δ̌)
m,n ) =

o(1) from Assumption 2 d). Q.E.D.

Proof of Lemma 8: Consider the infeasible estimator ΨB = 1
n

∑
m

∑
i,j∈Bm

(BiB′
j) ⊗ (εiε

′
j),

where Bi := (1, β′
i)

′. UsingE[εiε′j] = σ̌ijVε, the expectation isE[ΨB] =
1
n

∑
m

∑
i,j∈Bm

(BiB′
j)σ̌i,j⊗

Vε = QB⊗Vε+o(1) by Assumption A.7. Moreover, V [ΨB] = o(1) by using 1
n2

∑
m b

2(1+δ̌)
m,n = o(1).

Thus, ΨB = QB ⊗ Vε + op(1). Now, consider the feasible estimator Ψ̂B obtained from ΨB after

replacing Bi with B̂i and εi with ε̂i. We use root-n consistency of PML or FA-GMM estmates

with identity weighting under Assumptions 1-2, A.1-A.4. We have, B̂i = Bi + ηi + Op(
1√
n
) and

ε̂i = ε̃i+Op(
1√
n
), where ε̃i :=MF,Vεεi, ηi = NF,Vεεi. We control the effect of the remainder terms

at order Op(
1√
n
) by the condition 1

n3/2

∑
m b

2
m,n = o(1). Then, Ψ̂B = 1

n

∑
m

∑
i,j∈Bm

(BiB′
j) ⊗

(ε̃iε̃
′
j)+

1
n

∑
m

∑
i,j∈Bm

(ηiB′
j)⊗ (ε̃iε̃

′
j)+

1
n

∑
m

∑
i,j∈Bm

(Biη
′
j)⊗ (ε̃iε̃

′
j)+

1
n

∑
m

∑
i,j∈Bm

(ηiη
′
j)⊗

(ε̃iε̃
′
j) + op(1). The first term equals (Ik+1 ⊗MF,Vε)ΨB(Ik+1 ⊗M ′

F,Vε
), and converges to QB ⊗

(MF,VεVεM
′
F,Vε

) = QB ⊗ (MF,VεVε). The second and third terms are op(1), because their expecta-

tions are nil under the conditionE[wi,twi,swi,r] = 0, for all t, s, r, and their variances are vanishing.

In the fourth term 1
n

∑
m

∑
i,j∈Bm

(ηiη
′
j)⊗ (ε̃iε̃

′
j) =

1
n

∑
m(

∑
i∈Bm

ηi⊗ ε̃i)(
∑

i∈Bm
ηi⊗ ε̃i)

′, vector

ηi ⊗ ε̃i has zero expectation, i.e.,E[ηi ⊗ ε̃i] = vec(E[ε̃iη
′
i]) = σ̌iivec(MF,VεVεN

′
F,Vε

) = 0. Thus,
1
n

∑
m(

∑
i∈Bm

ηi ⊗ ε̃i)(
∑

i∈Bm
ηi ⊗ ε̃i)

′ is a consistent estimator for the asymptotic variance of
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1√
n

∑
i ηi⊗ε̃i = vec( 1√

n

∑
i ε̃iη

′
i) = vec(MF,VεZnN

′
F,Vε

) = (NF,Vε⊗MF,Vε)ATvech(Zn). Thus, we

have 1
n

∑
m

∑
i,j∈Bm

(ηiη
′
j)⊗(ε̃iε̃

′
j) = BB+op(1), whereBB := (NF,Vε⊗MF,Vε)ATΩZA

′
T (N

′
F,Vε

⊗

M ′
F,Vε

). A consistent estimator of the latter matrix is B̂B := (NF̂ ,V̂ε
⊗MF̂ ,V̂ε

)AT Ω̂ZA
′
T (N

′
F̂ ,V̂ε

⊗

M ′
F̂ ,V̂ε

). By combining the above results, we get equation (D.11). By applying the half-vectorization

operator, and the rule for the vec of a kronecker product, we get vech[QB⊗(MF,VεVε)] = Pvech(QB)

where P = 1
2
A′

T (k+1) (Ik+1 ⊗ [(KT,k+1 ⊗ IT )⊗ (Ik+1 ⊗ vec(MF,VεVε))])AT (k+1). Matrix P is

non-singular. The conclusion follows. Q.E.D.

F Practicable Asymptotically Equivalent FA-GMM Estimator

F.1 Modified Moment Restrictions

We first show that, by considering the cross-sectional variance instead of the cross-sectional second

moment in the moment restrictions, we obtain an asymptotically equivalent FA-GMM estimator

which is easier to compute. Indeed, we can write the lower block of sample moment vector ĝn(θ)

as vech( 1
n

∑
i yiy

′
i−Σ(ϑ)−µµ′) = vech(V̂y −Σ(ϑ)+ ȳȳ′−µµ′) = vech[V̂y −Σ(ϑ)]+ vech[(ȳ−

µ)µ′ + µ(ȳ − µ)′] + vech[(ȳ − µ)(ȳ − µ)′]. Moreover, we have vech[(ȳ − µ)µ′ + µ(ȳ − µ)′] =

A′
T (µ⊗ IT )(ȳ − µ). Then, we get:

ĝn(θ) =

 IT 0
T×T (T−1)

2

AT (µ⊗ IT ) IT (T−1)
2

×T (T−1)
2

 ȳ − µ

vech[V̂y − Σ(ϑ)]

+ r̂n(θ)

=: D(θ)ĝ∗n(θ) + r̂n(θ),

where r̂n(θ) := (0′T×1, vech[(ȳ − µ)(ȳ − µ)′]′)′. Term r̂n(θ) yields an asymptotically negligible

component in the estimator, since
√
nr̂n(θ0) = op(1) and ∂r̂n(θ0)

∂θ′
= op(1). Thus, asymptotically,

moment vector ĝn(θ) is a parameter-dependent non-singular linear transformation of moment vec-

tor ĝ∗n(θ). Hence, the FA-GMM estimator θ̂ is asymptotically equivalent to

θ̂∗ = argmin
θ∈Θ

ĝ∗n(θ)
′(V̂ ∗

g )
−1ĝ∗n(θ), (F.1)
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where V̂ ∗
g is a consistent estimator of V ∗

g , i.e., the asymptotic variance of
√
nĝ∗n(θ̃0). We have the

link Vg = D(θ0)V
∗
g D(θ0)

′.

The two subvectors that build ĝ∗n(θ) depend separately on parameters µ and ϑ, respectively.

Moreover, the upper subvector yields an exactly identified set of moment restrictions for param-

eter µ. It has important implications for the computation of estimator θ̂∗. First, the FOC for

parameter µ yields ∂ĝ∗n(θ)
′

∂µ
(V̂ ∗

g )
−1ĝ∗n(θ) = −(V̂ ∗

g )
11(ȳ − µ) − (V̂ ∗

g )
12vech[V̂y − Σ(ϑ)] = 0, where

the upper indices indicate blocks of the inverse matrix (V̂ ∗
g )

−1. Then, we concentrate out param-

eter µ to get µ = ȳ + [(V̂ ∗
g )

11]−1(V̂ ∗
g )

12vech[V̂y − Σ(ϑ)]. The concentrated criterion becomes

ĝ∗n(θ)
′(V̂ ∗

g )
−1ĝ∗n(θ) = vech[V̂y − Σ(ϑ)]′

(
(V̂ ∗

g )
22 − (V̂ ∗

g )
21[(V̂ ∗

g )
11]−1(V̂ ∗

g )
12
)
vech[V̂y − Σ(ϑ)] =

vech[V̂y − Σ(ϑ)]′(V̂ ∗
g,22)

−1vech[V̂y − Σ(ϑ)], where V̂ ∗
g,22 is the lower-right block of V̂ ∗

g . Thus, the

components of estimator θ̂∗ simplify to

µ̂∗ = ȳ + [(V̂ ∗
g )

11]−1(V̂ ∗
g )

12vech[V̂y − Σ(ϑ̂∗)], (F.2)

ϑ̂∗ = argmin
ϑ∈T

vech[V̂y − Σ(ϑ)]′(V̂ ∗
g,22)

−1vech[V̂y − Σ(ϑ)], (F.3)

where T is a compact subset of {ϑ : h(ϑ) = 0}. Hence, estimator ϑ̂∗ is obtained by minimizing a

quadratic form of vech[V̂y − Σ(ϑ)], and estimator µ̂∗ is obtained by plug-in without optimisation.

F.2 Numerical Computation of the Unconstrained FA-GMM Estimator

Let us now discuss the numerical computation of the estimate ϑ̂∗. As for optimisation of the PML

FA criterion, we face two options: the Newton-Raphson (NR) algorithm for the full parameter

vector ϑ, and the zigzag algorithm alternating among its components vec(F ) and diag(Vε). We

start with the first option, and leave the second one for Subsection E.2.2.

F.2.1 Newton-Raphson Algorithm

The FOC w.r.t. parameter vector ϑ is M(ϑ)′(V̂ ∗
g,22)

−1vech[V̂y − Σ(ϑ)] = 0, where M(ϑ) :=

∂vech[Σ(ϑ)]
∂ϑ′ = [A′

T (F ⊗IT ) : Ediag,T ], and the normalization constraint is h(ϑ) = 0. We expand the
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FOC and the constraint around a ’guess’ ϑ(0) that meets the constraints, i.e., h(ϑ(0)) = 0,20 and get

the linearized conditions M(ϑ(0))
′(V̂ ∗

g,22)
−1vech[V̂y − Σ(ϑ(0))] −M(ϑ(0))

′(V̂ ∗
g,22)

−1M(ϑ(0))(ϑ −

ϑ(0)) = 0 and H(ϑ(0))
′(ϑ − ϑ(0)) = 0, where H(ϑ) := ∂h(ϑ)′

∂ϑ
(see end of Section D.1 for a

characterisation of matrix H(ϑ)). Let LH(ϑ) be a full-rank p × (p − ρ) matrix, such that Ip −

H(ϑ)(H(ϑ)′H(ϑ))−1H(ϑ)′ = LH(ϑ)LH(ϑ)
′ and LH(ϑ)

′LH(ϑ) = Ip−ρ. Then, as in Section D.1,

the solution of the linearized equation under constraint is

ϑ = ϑ(0) + LH(ϑ(0))
(
LH(ϑ(0))

′M(ϑ(0))
′(V̂ ∗

g,22)
−1M(ϑ(0))LH(ϑ(0))

)−1

×LH(ϑ(0))
′M(ϑ(0))

′(V̂ ∗
g,22)

−1vech[V̂y − Σ(ϑ(0))]. (F.4)

Then, we obtain the updated estimate ϑ(1) from ϑ after rotating the factor matrix F such that

F ′V −1
ε F is diagonal.21 The NR algorithm iterates this procedure until a convergence criterion is

met.

F.2.2 Zigzag Algorithms

A second option is the analogue of a zigzag algorithm (Magnus and Neudecker (2007), Hautsch

et al. (2023)). It consists in alternating the computation of an estimate of Vε for given F , and an

estimate of F for given Vε, until a convergence criterion is met. For the former step, we use that

vech(V̂y − Σ(ϑ)) = vech(V̂y − FF ′) − (Ediag,T )diag(Vε) (see Section D.1 for a characterisation

of matrix Ediag,T ). Thus, we get the closed-form solution diag(Vε) = (E ′
diag,T (V̂

∗
g,22)

−1Ediag,T )
−1

E ′
diag,T (V̂

∗
g,22)

−1vech(V̂y −FF ′) by GLS.22 For the latter step, the problem consists in minimizing

the criterion vech(V̂y − FF ′ − Vε)
′(V̂ ∗

g,22)
−1vech(V̂y − FF ′ − Vε) w.r.t. the T × k matrix F such

that F ′V −1
ε F = diag, for given Vε. We use that vech(V̂y − FF ′ − Vε) = D(Vε)vech(Ξ̂ − UU ′),

20We can for example use the FA estimates obtained by the zigzag routine (Magnus and Neudecker (2007), p. 407)

applied to the Gaussian PML criterion as in FGS.
21This rotation is needed because the constraint h(ϑ) = 0 is implemented only at first-order, and not exactly, in the

NR updating step.
22For given F corresponding to the PML factor estimates, we can use such a solution to initialise the NR algorithm,

but we need then to rotate the factor starting values to satisfy the standardisation h(ϑ(0)) = 0. In our Monte Carlo

results, we have not found much improvement over initialising directly with PML estimates.
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where Ξ̂ := V
−1/2
ε V̂yV

−1/2
ε −IT and U := V

−1/2
ε F andD(Vε) :=

1
2
A′

T (V
1/2
ε ⊗V 1/2

ε )AT . By direct

calculation, we can check that D(Vε) is a diagonal T (T+1)
2

× T (T+1)
2

matrix, with diagonal elements

Vε,11, · · ·Vε,TT , {
√
Vε,iiVε,jj}i<j . Then, the problem becomes

min
U∈RT×k: U ′U=diag

vech(Ξ̂− UU ′)′Ω̂∗vech(Ξ̂− UU ′), (F.5)

where Ω̂∗ = D(Vε)(V̂
∗
g,22)

−1D(Vε). In an alternative parameterization, let U = UΓ1/2 where U is

such that U ′U = Ik and Γ = diag(γ) for γ ∈ Rk
+. Thus, we can also formulate the minimization

problem as:

min
U∈RT×k: U ′U=Ik

min
γ∈Rk

+

vech(Ξ̂− UΓU ′)′Ω̂∗vech(Ξ̂− UΓU ′). (F.6)

The two formulations (F.5) and (F.6) lead to different NR steps, that we detail below. We use the

terminology zigzag1 and zizag2 to differentiate them in the numerical study of Section E.5.

We use the following notation. For two matricesB = [b1 : ... : bm] andC = [c1 : ... : cm], let us

define the following variations of the Kronecker product: B⊗<C := [{bi⊗ cj}i<j] and B⊗=C :=

[{bi ⊗ ci}i=1,...,n]. We define B⊗≤C and B⊗≥C similarly. Pairs (i, j) are ranked as the indices of

a m ×m matrix read row-wise. With this notation, Am =
[√

2(Im ⊗= Im) : (Im ⊗< Im)
]
. The

columns of matrix B⊗⋆C are a subset of the columns of B ⊗C, namely B⊗⋆C = (B⊗C)(Im ⊗⋆

Im), for ⋆ denoting either <, =, ≤, or ≥.

For Problem (F.5), we use the vector constraint hU(u) = 0, where hU(u) = Eoff,kvech(U
′U)

and u = vec(U). The gradient is ∂hU (u)
∂u′ = Eoff,kA

′
k(Ik ⊗ U ′). Hence, we get the (Tk) × k(k−1)

2

matrix HU(u) :=
∂h′

U (u)

∂u
= (Ik ⊗ U)AkE

′
off,k = (Ik ⊗ U)(Ik ⊗< Ik) = Ik ⊗< U . Then, LHU

(u)

is the (Tk) × (Tk − k(k−1)
2

) matrix defined by LHU
(u) :=

[
(Ik ⊗≥ Ũ) : (Ik ⊗ U⊥)

]
, where

Ũ := U(U ′U)−1/2 and U⊥ is a T × (T − k) matrix with orthonormal columns that are orthogonal

to the range of U . Indeed, the Tk− k(k−1)
2

columns of the matrix LHU
(u) are mutually orthogonal,

normalized to length 1, and are orthogonal to any columns of HU(u), for any u such that hU(u) =

54



0. Moreover, MU(u) = −∂vech(Ξ̂−UU ′)
∂vec(U)′

= A′
T (U ⊗ IT ). Hence, we update

u = u(0) + LHU
(u(0))

(
LHU

(u(0))
′MU(u(0))

′Ω̂∗MU(u(0))LHU
(u(0))

)−1

×LHU
(u(0))

′MU(u(0))
′Ω̂∗vech[Ξ̂− U(0)U

′
(0))], (F.7)

and we getU(1) by transformingU to imposeU ′
(1)U(1) = diag, i.e., U(1) = U(U ′U)−1/2diag(U ′U)1/2.

We can get a more explicit rewriting of the updating equation (F.7) by using

MU(u(0))
′Ω̂∗MU(u(0)) = (F ′

(0) ⊗ V 1/2
ε )AT (V̂

∗
g,22)

−1A′
T (F(0) ⊗ V 1/2

ε ),

MU(u(0))
′Ω̂∗vech[Ξ̂− U(0)U

′
(0))] = (F ′

(0) ⊗ V 1/2
ε )AT (V̂

∗
g,22)

−1vech(V̂y − F(0)F
′
(0) − Vε),

where F(0) = V
1/2
ε U(0), and (F(0) ⊗ V

1/2
ε )LHU

(u(0)) =
(
[F(0) ⊗≥ (F(0)Γ

−1/2
(0) )] : F(0) ⊗G(0)

)
,

with G(0) = V
1/2
ε U⊥,(0) and Γ(0) = U ′

(0)U(0). Hence, we can write (F.7) as:

u = u(0) + LHU
(u(0))

(
J ′
(0)(V̂

∗
g,22)

−1J(0)

)−1

J ′
(0)(V̂

∗
g,22)

−1vech(V̂y − F(0)F
′
(0) − Vε), (F.8)

where J(0) = A′
T

(
[F(0) ⊗≥ (F(0)Γ

−1/2
(0) )] : F(0) ⊗G(0)

)
.

For Problem (F.6), we use the ideas in Manton et al. (2003), namely we solve the inner min-

imization problem in closed form, and then apply the NR method to the outer minimization after

concentration, by parameterizing deviations in matrix U in terms of the orthogonal complement

of its column space. We use vech(UΓU ′) = 1
2
A′

T (U ⊗ U)vec(Γ) = 1
2
A′

T (U ⊗ U)(Ik ⊗= Ik)γ =

1
2
A′

T (U ⊗= U)γ =: N (U)γ. Then, the solution of the inner minimization problem in (F.6) is

γ = (N (U)′N (U))−1N (U)′vech(Ξ̂). After replacement in (F.6), we get the concentrated crite-

rion value ϕ(U) = vech(Ξ̂)′
(
IT (T+1)

2

− P(U)
)
vech(Ξ̂) for the outer minimization problem under

constraint U ′U = Ik, where P(U) := N (U)(N (U)′N (U))−1N (U)′. To solve the latter con-

strained minimization problem by the NR algorithm, we parametrize deviations around U(0) as

U = U(0) + U⊥,(0)A, where U⊥,(0) is a T × (T − k) matrix with orthonormal columns which are

orthogonal to the range of U(0), and A is a (T − k) × k parameter matrix. Indeed, such parame-

terization imposes the constraint at first order in A. Let us define ϕ(0)(a) := ϕ(U(0) + U⊥,(0)A) for
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a := vec(A). We get a by the NR step

a =

(
−
∂2ϕ(0)(0)

∂a∂a′

)−1
∂ϕ(0)(0)

∂a
, (F.9)

and then we get U(1) = U(U ′U)−1/2. To implement the updating rule (F.9), we need the first- and

second-order partial derivatives of function ϕ(U(0) + U⊥,(0)A) w.r.t. a, that we give explicitly next.

Lemma 9 The first- and second-order partial derivatives are given by:

∂ϕ(0)(0)

∂a
= −(Ik ⊗ U⊥,(0))

′[(Ik ⊗ G(0)) + (H(0) ⊗ IT )]
′[(Ik ⊗= Ik)⊗ AT ]

×
(
[(N ′

(0)N(0))
−1N ′

(0)vech(Ξ̂)]⊗ [(I − P(0))vech(Ξ̂)]
)

= −[(Ik ⊗ (G(0)U⊥,(0))) + (H(0) ⊗ U⊥,(0))]
′[(Ik ⊗= Ik)⊗ AT ]

×
(
[(N ′

(0)N(0))
−1N ′

(0)vech(Ξ̂)]⊗ [(I − P(0))vech(Ξ̂)]
)

(F.10)

where G := (Kk,T ⊗ IT )(IT ⊗ vec(U)) and H := (Ik ⊗ Kk,T )(vec(U) ⊗ Ik), and the index (0)

indicates that the quantities are evaluated for U = U(0), and:

∂2ϕ(0)(0)

∂a∂a′
= (Ik ⊗ U⊥,(0))

′
(
−(IkT ⊗ ξ̂(0))

′S3 − S ′
3(IkT ⊗ ξ̂(0))

)
(Ik ⊗ U⊥,(0))

+
1

2
[(Ik ⊗ (G(0)U⊥,(0))) + (H(0) ⊗ U⊥,(0))]

′[(Ik ⊗= Ik)⊗ AT ]

×
{
[((N ′

(0)N(0))
−1N ′

(0))⊗ (η̂2,(0)η̂
′
1,(0))]KT (T+1)

2
,k
− [(N ′

(0)N(0))
−1 ⊗ (η̂2,(0)η̂

′
2,(0))]

+(η̂1,(0)η̂
′
1,(0))⊗ (IT (T+1)

2

− P(0)) + [(η̂1,(0)η̂
′
2,(0))⊗ (N(0)(N ′

(0)N(0))
−1)]KT (T+1)

2
,k

}
×[(Ik ⊗= Ik)⊗ AT ]

′[(Ik ⊗ (G(0)U⊥,(0))) + (H(0) ⊗ U⊥,(0))], (F.11)

where ξ̂ := [(Ik ⊗= Ik) ⊗ AT ](η̂1 ⊗ η̂2) with η̂1 := (N ′N )−1N ′vech(Ξ̂) and η̂2 := (IT (T+1)
2

−

P)vech(Ξ̂), and S3 := [S1⊗(Kk,T⊗IT )][vec(IT )⊗ITk]+[Ik⊗(S2(Ik⊗Kk,T ))][(Kk,Tk⊗Ik)(ITk⊗

vec(Ik))], with S1 := (Ik ⊗KT,k)(vec(Ik)⊗ IT ) and S2 := (KT,k2T ⊗ IT )(Ik2T ⊗ vec(IT )).

F.3 Constrained FA-GMM Estimators

In this subsection, we show that the arguments and numerical methods presented in Subsections

E.1 and E.2 extend to the computation of the constrained FA-GMM estimator θ̂c. First, since
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imposing the constraint a(θ) = 0 is equivalent to restricting the parameter ϑ to belong to set

Tc := {ϑ : a(θ) = 0}, and it does not involve parameter vector µ, from the arguments in

Subsection E.1, we get that θ̂c is asymptotically equivalent to a constrained FA-GMM estimator θ̂∗c

based on moment vector g∗n(θ) including the cross-sectional variance, and that the components of

vector θ̂∗c are computed as:

µ̂∗
c = ȳ + [(V̂ ∗

g )
11]−1(V̂ ∗

g )
12vech[V̂y − Σ(θ̂∗c )], (F.12)

ϑ̂∗
c = argmin

ϑ∈Tc
vech[V̂y − Σ(ϑ)]′(V̂ ∗

g,22)
−1vech[V̂y − Σ(ϑ)]. (F.13)

Moreover, the FOC for the Lagrangian of the constrained minimization problem defining ϑ̂∗
c , i.e.,

−M(ϑ̂∗
c)

′(V̂ ∗
g,22)

−1vech[V̂y−Σ(ϑ̂∗
c)]+

∂a(θ̂∗c )
′

∂ϑ
λ̂∗ = 0, with a(θ) = L′

1T
diag(Vε), yields the equation

−E ′
diag,T (V̂

∗
g,22)

−1vech[V̂y − Σ(ϑ̂∗
c)] + L1T λ̂

∗ = 0, that can be used to get the Lagrange-multiplier

vector λ̂∗ = L′
1T
Ediag,T (V̂

∗
g,22)

−1vech[V̂y − Σ(ϑ̂∗
c)] as a function of the constrained estimator ϑ̂∗

c .

To compute estimate ϑ̂∗
c in (F.13), we can use either the NR algorithm for the full vector,

or the zigzag algorithm. In the first case, we augment the constraint vector and stack h(ϑ) and

a(ϑ). We get matrix Hc(ϑ) :=
[
∂h(ϑ)′

∂ϑ
: ∂a(ϑ)′

∂ϑ

]
, and define accordingly matrix LHc(ϑ) to span

the orthogonal complement of the columns of Hc(ϑ). Then, the NR update equation is as in (F.4)

after replacing LH(ϑ) with LHc(ϑ). Again, to get ϑc,(1), we need to rotate the columns of the factor

estimate to meet the nonlinear constraint F ′V −1
ε F = diag. If the constraint a(θ) = 0 is linear as

in the sphericity test, we do not need to enforce it after the update, as it is automatically imposed

in the NR step.

In the zigzag algorithm, the step to get F for given Vε is unchanged compared to the uncon-

strained algorithms defined in Subsections E.2.1 and E.2.2, since the constrained vector a(θ) does

not involve parameter F in the sphericity test. In the step aimed at getting Vε given F , we im-

pose the linear constraint L′
1T
diag(Vε) = 0, which amounts to use the constrained GLS estimate

diag(Vε,c) =

[
IT − (E ′

diag,T (V̂
∗
g,22)

−1Ediag,T )
−1L1T

(
L′
1T
(E ′

diag,T (V̂
∗
g,22)

−1Ediag,T )
−1L1T

)−1

L′
1T

]
diag(Vε) instead ot the unconstrained one diag(Vε) = (E ′

diag,T (V̂
∗
g,22)

−1Ediag,T )
−1E ′

diag,T (V̂
∗
g,22)

−1

vech(V̂y − FF ′).

57



F.4 Proof of Lemma 9

Let us start with the first-order derivatives. We use the notation of differentials (see Magnus and

Neudecker (2007), Chapters 5 and 6). The differential of function ϕ is dϕ = −vech(Ξ̂)′dPvech(Ξ̂),

where, by standard arguments, dP = (IT (T+1)
2

−P)(dN )(N ′N )−1N ′+N (N ′N )−1(dN )′(IT (T+1)
2

−

P). Then: dϕ = −2vech(Ξ̂)′(IT (T+1)
2

−P)(dN )(N ′N )−1N ′vech(Ξ̂) = −2
(
[(N ′N )−1N ′vech(Ξ̂)]

⊗[(IT (T+1)
2

− P)vech(Ξ̂)]
)′
vec(dN ). The differential of function N is given by dN = 1

2
A′

T [(dU)

⊗U+U⊗(dU)](Ik⊗=Ik) and, after vectorization, we get vec(dN ) = 1
2
[(Ik⊗=Ik)⊗AT ]

′vec[(dU)⊗

U+U⊗(dU)]. Next, we use the vectorization of the Kronecker product (see Magnus and Neudecker

(2007), p. 48)23, so that vec[(dU) ⊗ U + U ⊗ (dU)] = [(Ik ⊗ G) + (H ⊗ IT )]vec(dU), where

G := (Kk,T ⊗ IT )(IT ⊗ vec(U)) is (kT 2) × T matrix and H := (Ik ⊗ Kk,T )(vec(U) ⊗ Ik) is

(k2T )× k matrix. Thus, we get:

dϕ = −
(
[(N ′N )−1N ′vech(Ξ̂)]⊗ [(IT (T+1)

2

− P)vech(Ξ̂)]
)′
[(Ik ⊗= Ik)⊗ AT ]

′

×[(Ik ⊗ G) + (H⊗ IT )]vec(dU). (F.14)

By using dU = U⊥,(0)dA and vec(dU) = (Ik ⊗ U⊥,(0))da, we get the gradient vector in (F.10).

Let us now establish the second-order derivatives. To compute the second-order differential

d2ϕ, we go back to formula (F.14) and compute the differential of the vector function multiplying

vec(dU). By the product rule for differentials, we have:

d2ϕ = −(vec(dU))′[(Ik ⊗ dG) + (dH⊗ IT )]
′[(Ik ⊗= Ik)⊗ AT ]

×
(
[(N ′N )−1N ′vech(Ξ̂)]⊗ [(IT (T+1)

2

− P)vech(Ξ̂)]
)

−(vec(dU))′[(Ik ⊗ G) + (H⊗ IT )]
′[(Ik ⊗= Ik)⊗ AT ]

×
(
[d{(N ′N )−1N ′}vech(Ξ̂)]⊗ [(IT (T+1)

2

− P)vech(Ξ̂)]
)

+(vec(dU))′[(Ik ⊗ G) + (H⊗ IT )]
′[(Ik ⊗= Ik)⊗ AT ]

×
(
[(N ′N )−1N ′vech(Ξ̂)]⊗ [(dP)vech(Ξ̂)]

)
, (F.15)

23It amounts to use the following result: let A and B be m × n and p × q matrices, then vec(A ⊗ B) = (In ⊗

G)vec(A) = (H ⊗ Ip)vec(B), where G = (Kq,m ⊗ Ip)(Im ⊗ vec(B)) and H = (In ⊗Kq,m)(vec(A)⊗ Iq).
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where dG = (Kk,T⊗IT )(IT⊗vec(dU)) and dH = (Ik⊗Kk,T )(vec(dU)⊗Ik) and d{(N ′N )−1N ′} =

−(N ′N )−1N ′(dN )(N ′N )−1N ′ + (N ′N )−1(dN )′(IT (T+1)
2

− P). We obtain the matrix of the

second-order partial derivatives of ϕ by writing d2ϕ as a quadratic form in vector vec(dU). To

establish this matrix, we need to rewrite the three terms on the RHS of (F.15) using repeatedly the

vectorization of matrix products and Kronecker products (footnote 8).

(a) For the first term on the RHS of (F.15), we have successively:

[(Ik ⊗ dG) + (dH⊗ IT )]
′[(Ik ⊗= Ik)⊗ AT ]

(
[(N ′N )−1N ′vech(Ξ̂)]⊗ [(IT (T+1)

2

− P)vech(Ξ̂)]
)

=: [(Ik ⊗ dG) + (dH⊗ IT )]
′ξ̂ = vec

(
ξ̂′[(Ik ⊗ dG) + (dH⊗ IT )]

)
= (IkT ⊗ ξ̂)′vec[(Ik ⊗ dG) + (dH⊗ IT )] = (IkT ⊗ ξ̂)′ [(S1 ⊗ IkT 2)vec(dG) + (Ik ⊗ S2)vec(dH)]

= (IkT ⊗ ξ̂)′ {(S1 ⊗ IkT 2)[IT ⊗ (Kk,T ⊗ IT )]vec(IT ⊗ vec(dU))

+(Ik ⊗ S2)[Ik ⊗ (Ik ⊗Kk,T )]vec(vec(dU)⊗ Ik)}

= (IkT ⊗ ξ̂)′ {[S1 ⊗ (Kk,T ⊗ IT )][vec(IT )⊗ ITk]

+[Ik ⊗ (S2(Ik ⊗Kk,T ))][(Kk,Tk ⊗ Ik)(ITk ⊗ vec(Ik))]} vec(dU)

=: (IkT ⊗ ξ̂)′S3vec(dU), (F.16)

where we define the vector ξ̂ := [(Ik⊗=Ik)⊗AT ]
(
[(N ′N )−1N ′vech(Ξ̂)]⊗ [(IT (T+1)

2

− P)vech(Ξ̂)]
)

and matrices S1 := (Ik ⊗KT,k)(vec(Ik)⊗ IT ) and S2 := (KT,k2T ⊗ IT )(Ik2T ⊗ vec(IT )).
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(b) For the second term on the RHS of (F.15), we use:

[d{(N ′N )−1N ′}vech(Ξ̂)]⊗ [(IT (T+1)
2

− P)vech(Ξ̂)]

= [−(N ′N )−1N ′(dN )η̂1 + (N ′N )−1(dN )′η̂2]⊗ η̂2

= vec
[
η̂2

(
−(N ′N )−1N ′(dN )η̂1 + (N ′N )−1(dN )′η̂2

)′]
= (Ik ⊗ η̂2)vec

[(
−(N ′N )−1N ′(dN )η̂1 + (N ′N )−1(dN )′η̂2

)′]
= (Ik ⊗ η̂2)vec

[
−η̂′1(dN )′N (N ′N )−1 + η̂′2(dN )(N ′N )−1

]
=

(
−[((N ′N )−1N ′)⊗ (η̂2η̂

′
1)]KT (T+1)

2
,k
+ [(N ′N )−1 ⊗ (η̂2η̂

′
2)]

)
vec(dN )

=
1

2

(
−[((N ′N )−1N ′)⊗ (η̂2η̂

′
1)]KT (T+1)

2
,k
+ [(N ′N )−1 ⊗ (η̂2η̂

′
2)]

)
[(Ik ⊗= Ik)⊗ AT ]

′

×[(Ik ⊗ G) + (H⊗ IT )]vec(dU) (F.17)

where we define the vectors η̂1 := (N ′N )−1N ′vech(Ξ̂) and η̂2 := (IT (T+1)
2

− P)vech(Ξ̂).

(c) For the third term on the RHS of (F.15), we use:

[(N ′N )−1N ′vech(Ξ̂)]⊗ [(dP)vech(Ξ̂)]

= η̂1 ⊗
(
(IT (T+1)

2

− P)(dN )η̂1 +N (N ′N )−1(dN )′η̂2

)
= vec

(
(IT (T+1)

2

− P)(dN )η̂1η̂
′
1 +N (N ′N )−1(dN )′η̂2η̂

′
1

)
=

[
(η̂1η̂

′
1)⊗ (IT (T+1)

2

− P) + [(η̂1η̂
′
2)⊗ (N (N ′N )−1)]KT (T+1)

2
,k

]
vec(dN )

=
1

2

[
(η̂1η̂

′
1)⊗ (IT (T+1)

2

− P) + [(η̂1η̂
′
2)⊗ (N (N ′N )−1)]KT (T+1)

2
,k

]
[(Ik ⊗= Ik)⊗ AT ]

′

×[(Ik ⊗ G) + (H⊗ IT )]vec(dU). (F.18)

We plug equations (F.16)-(F.18) into (F.15), and exploit the symmetry of the matrix defining

the quadratic form, to get:

d2ϕ =
1

2
vec(dU)′

(
−(IkT ⊗ ξ̂)′S3 − S ′

3(IkT ⊗ ξ̂)
)
vec(dU)

+
1

2
vec(dU)′[(Ik ⊗ G) + (H⊗ IT )]

′[(Ik ⊗= Ik)⊗ AT ]
{
[((N ′N )−1N ′)⊗ (η̂2η̂

′
1)]KT (T+1)

2
,k

−[(N ′N )−1 ⊗ (η̂2η̂
′
2)] + (η̂1η̂

′
1)⊗ (IT (T+1)

2

− P) + [(η̂1η̂
′
2)⊗ (N (N ′N )−1)]KT (T+1)

2
,k

}
×[(Ik ⊗= Ik)⊗ AT ]

′[(Ik ⊗ G) + (H⊗ IT )]vec(dU),
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where ξ̂ = [(Ik⊗=Ik)⊗AT ](η̂1⊗η̂2) and we can check that matrix [(η̂1η̂
′
2)⊗(N (N ′N )−1)]KT (T+1)

2
,k

is the transposed of [((N ′N )−1N ′)⊗(η̂2η̂
′
1)]KT (T+1)

2
,k

by the properties of the commutation matrix.

By using vec(dU) = (Ik ⊗ U⊥,(0))da, we get the Hessian matrix explicitly in (F.11). Q.E.D.

F.5 Numerical Study of the FA-GMM estimators

This section compares the performance of the algorithms developed in Sections E.2.1 (NR) and

E.2.2 (zigzag1-2). We investigate both the unconstrained (Section E.1) and constrained (Section

E.3) FA-GMM estimators. We set the starting values at the PML estimates of FGS obtained with

the zizag routine of Magnus and Neudecker (2007). We also rely on them to compute optimal

weighting since they are consistent. Table 2 reports Root Mean Square Error (RMSE), Bias,

and Standard Deviation (SD) for the PML and PCA estimators as well as the unconstrained and

constrained FA-GMM (NR and zigzag1-2) estimators. We rely on the same simulation design

as the one for the MC experiments (Section 5) for the size, power, and local power of the test

in a non-gaussian setting (DGP1-3). We compute RMSE as the square root of E[∥θ̂ − θ∥2] =

tr(V [θ̂]) + ∥E[θ̂] − θ∥2, Bias as ∥E[θ̂] − θ∥ , and SD as tr(V [θ̂])1/2 for the estimates of θ =

(µ′, vec(F )′, diag(Vε)
′)′. We use n = 500 and T = 12. Under sphericity (DGP1), PCA and con-

strained estimators (con) fare better in terms of RMSE and SD. Under DGP2-3, since sphericity

does not hold, the PCA estimators exhibit huge RMSE, Bias, and SD, and this even under a lo-

cal alternative. It is also the case for constrained NR and zigzag1-2 algorithms, but not for the

unconstrained FA-GMM and PML estimators. We observe a slight advantage in terms of RMSE

and SD for the unconstrained FA-GMM estimator (NR) for the three DGPs (as expected, at least

asymptotically, from optimal weighting delivering efficiency gains w.r.t. PML), and we think it

should be the default choice in empirics. The failure of PCA spotted in Table 2 under DGP2-3

should convince empirical researchers to refrain from running PCA in short panels when errors

are not spherical. We have observed a deterioration of the performance of the FA-GMM and PML

estimates when T = 6 for cases, where matrix MF,Vε ⊙MF,Vε is badly conditioned: its smallest
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singular value is close to zero and local identification is challenged (Assumption A.4). It happens

in approximately 17% of the 100 simulated factor paths. When we remove those cases, we observe

the same performance as for T = 12 (and T = 24).

We can also look at computational time for the three algorithms NR and zizag1-2. The NR

algorithm needs more iterations than the zigzag routines, but the zigzag routines make NR steps

inside each iteration which slows down the computations. The three algorithms give close numer-

ical results, even if NR is slightly better in terms of RMSE and SD, for the unconstrained panel

FA-GMM estimators (see Table 2). Their good accuracy shows their relevance for applied work.

Our simulation results point to a strong advantage of the NR algorithm in terms of computational

speed. Indeed, the average computation time for the NR algorithm is around 5 millisecond, com-

pared to 31-119 milliseconds for the zigzag1-2 algorithms. Relative computational times are even

slightly lower for the constrained version of NR w.r.t. zigzag1-2. It explains why we opt for the

NR algorithm in our MC experiments (Section 5) and our empirics (Section 6).
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n = 500 DGP1 DGP2 DGP3

T = 12 RMSE Bias SD RMSE Bias SD RMSE Bias SD

PML 1.33 0.11 1.33 1.96 0.14 1.96 1.56 0.12 1.55

NR 1.32 0.11 1.32 1.95 0.14 1.94 1.54 0.12 1.53

Zigzag1 1.33 0.11 1.32 1.95 0.14 1.94 1.55 0.12 1.55

Zigzag2 1.35 0.11 1.34 1.96 0.15 1.95 1.56 0.13 1.56

PCA 0.65 0.06 0.65 9.54 9.46 0.92 1.71 1.53 0.76

NR con 0.68 0.25 0.64 10.75 10.62 1.44 2.45 2.05 1.12

Zigzag1 con 0.70 0.25 0.65 10.81 8.35 4.82 2.29 2.05 0.98

Zigzag2 con 1.06 0.27 1.02 9.52 7.66 3.95 2.30 1.88 1.31

Table 2: We provide the average Root Mean Square Error (RMSE), Bias, and Standard Deviation

(SD), for the different estimators and algorithms, under DGP1-3 and PML, PCA, and FA-GMM

approaches. We take averages across 100 different draws of the factor path for n = 500, T = 12,

and two latent factors.

G Monte Carlo Experiments for the LM and LR Tests

This section gathers the Monte Carlo Experiments for the LM and LR tests. Tables 3 and 4 show

numbers similar to the entries of Table 1 for the W test.
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ξLMn Size (%) Global Power (%) Local Power (%)

T 6 12 24 6 12 24 6 12 24

n = 500 6.5 6.2 6.2 93 100 100 30 98 99

(0.4) (0.3) (0.3) (17.4) (0.0) (0.0) (10.6) (4.4) (0.5)

n = 1000 5.9 5.8 5.5 97 100 100 27 96 100

(0.3) (0.3) (0.3) (13.0) (0.0) (0.0) (9.8) (7.8) (0.0)

n = 5000 5.4 5.3 5.2 100 100 100 23 90 100

(0.3) (0.3) (0.3) (0.0) (0.0) (0.0) (8.8) (12.7) (0.0)

Table 3: For each sample size combination (n, T ), we provide the average size, power, and local

power in % for the test statistic ξLMn under DGP1-3. Nominal size is 5%. In parentheses, we report

the standard deviations for size, power, and local power across 100 different draws of the factor

path. The number of latent factors is set equal to two.

ξLRn Size (%) Global Power (%) Local Power (%)

T 6 12 24 6 12 24 6 12 24

n = 500 6.5 6.2 6.2 93 99 100 30 98 99

(0.4) (0.3) (0.3) (17.4) (0.0) (0.0) (10.6) (4.4) (0.5)

n = 1000 5.9 5.8 5.6 97 100 100 27 96 100

(0.3) (0.3) (0.3) (13.0) (0.0) (0.0) (9.8) (7.8) (0.0)

n = 5000 5.4 5.3 5.2 100 100 100 23 90 100

(0.3) (0.3) (0.3) (0.0) (0.0) (0.0) (8.8) (12.7) (0.0)

Table 4: For each sample size combination (n, T ), we provide the average size, power, and local

power in % for the test statistic ξLRn under DGP1-3. Nominal size is 5%. In parentheses, we report

the standard deviations for size, power, and local power across 100 different draws of the factor

path. The number of latent factors is set equal to two.
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H Orthogonality Restrictions with Second-Order Moments

This section establishes orthogonality restrictions based on second-order moment restrictions for

panel model (4). We build on ideas of Arellano and Bonhommes (2012) Section 3.4, extending the

analysis of our FA seting to the more general model (4) and accommodating a random coefficient

in the variance (see also footnote 17 in Arellano and Bonhomme (2012)). Specifically, for model

Yi = d(zi, ζ) + R(zi, ζ)βi + εi, let us assume E[εi|zi, βi] = 0 and V [εi|zi, βi, σ2
i ] = σ2

i Vε(zi, ψ),

where σ2
i is a random coefficient and ψ an unknown parameter vector. By taking the Kronecker

product of Yi with itself, and computing the conditional expectation, we get:

E[Yi ⊗ Yi|zi, βi, σ2
i ] = [d(zi, ζ)⊗ d(zi, ζ)] + [d(zi, ζ)⊗R(zi, ζ) +R(zi, ζ)⊗ d(zi, ζ)]βi

+[R(zi, ζ)⊗R(zi, ζ)](βi ⊗ βi) + σ2
i vec(Vε(zi, ψ)). (G.1)

Then, by stacking (G.1) with E[Yi|zi, βi] = d(zi, θ) +R(zi, θ)βi, we get from (4):

E(Y∗
i |zi, γi) = d∗(zi, θ) +R∗(zi, θ)γi, (G.2)

where Y∗
i = (Y ′

i, (Yi ⊗ Yi)
′)′, the vector of random coefficients is γi = (β′

i, (βi ⊗ βi)
′, σ2

i )
′, the

augmented parameter vector is θ = (ζ ′, ψ′)′, and:

d∗(zi, θ) =

 d(zi, ζ)

d(zi, ζ)⊗ d(zi, ζ)

 ,

R∗(zi, θ) =

 R(zi, ζ) 0 0

d(zi, ζ)⊗R(zi, ζ) +R(zi, ζ)⊗ d(zi, ζ) R(zi, ζ)⊗R(zi, ζ) vec(Vε(zi, ψ))

 .

The conditional moment restriction in (G.2) is of the type studied in Chamberlain (1992), so that

we can use his approach to obtain the orthogonality restrictions to estimate θ and ϕ∗ = E[γi].

Again, in our FA setting, we can normalize ϕ∗, so that those parameters do not appear in the

orthogonality restrictions.
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I Proof of Proposition 3

Here, we derive the asymptotic distributions of the unconstrained and constrained FA-GMM esti-

mators as well as the ones of the trinity of FA-GMM test statistics under local alternative hypothe-

ses. We also check the conditions for establishing the Gaussian experiment for testing sphericity

in the FA model. Below, probability order op(1) and distributional convergence are under the

sequence of local alternative hypotheses.

(i) Let us start with the unconstrained FA-GMM estimator and the W statistic. Under the local

alternative hypothesis H1,loc, we have: √
n(µ̂− µ0)

√
nL′

H(ϑ̂− ϑn)

 = −Σ̃0J̃
′
0V

−1
g

√
nĝn(θn) + op(1), (G.3)

similarly as in Equation (D.4), and
√
nH ′(ϑ̂− ϑn) = op(1), and

√
na(θ̂) =

√
na(θn) +

∂a(θn)

∂θ′
√
n(θ̂ − θn) + op(1) = δ +

∂a(θ0)

∂θ′
√
n(θ̂ − θn) + op(1)

= δ − Ã′Σ̃0J̃
′
0V

−1
g

√
nĝn(θn) + op(1), (G.4)

from a Taylor expansion and Equation (G.3).

(ii) Let us now consider the constrained FA-GMM estimator and the Lagrange multiplier vector.

Under H1,loc, Equation (D.9) is modified into δ+ ∂a(θ0)
∂ϑ′

√
n(ϑ̂c−ϑn) = op(1), and Equation (D.10)

becomes:

 J̃ ′
0V

−1
g J̃0 Ã

Ã′ 0(T−1)×(T−1)




 √
n(µ̂c − µ0)

√
nL′

H(ϑ̂
c − ϑn)


√
nλ̂

 = −

 J̃ ′
0V

−1
g

√
nĝn(θn)

δ

+ op(1).

(G.5)

By the inversion of the block matrix in the LHS of (G.5), together with Equation (D.8), we get the
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asymptotic expansions of
√
n(µ̂c − µ0),

√
n(ϑ̂c − ϑn) and

√
nλ̂ under H1,loc: √

n(µ̂c − µ0)
√
nL′

H(ϑ̂
c − ϑn)

 = −Σ̃0Ã(Ã
′Σ̃0Ã)

−1δ − (I − P )′Σ̃0J̃
′
0V

−1
g

√
nĝn(θn) + op(1), (G.6)

√
nH ′(ϑ̂c − ϑn) = op(1),

√
nλ̂ = (Ã′Σ̃0Ã)

−1δ − (Ã′Σ̃0Ã)
−1Ã′Σ̃0J̃

′
0V

−1
g

√
nĝn(θn) + op(1). (G.7)

(iii) From Equations (G.4) and (G.7), we get
√
nλ̂ = (Ã′Σ̃0Ã)

−1
√
na(θ̂) + op(1), i.e., the

vectors that build the quadratic forms defining the W and LM statistics are equal up to op(1) terms.

It then follows that ξLMn = ξWn + op(1).

(iv) We use
√
nĝn(θn) ⇒ N (0, Vg). From Equation (G.4), we get

√
na(θ̂) ⇒ N (δ,ΩW ),

with ΩW = Ã′Σ̃0Ã. Thus, ξWn ⇒ χ2(T − 1, δ′Ω−1
W δ). The same asymptotic distribution applies

for the LM statistic ξLMn because of the asymptotic equivalence. From Subsection D.1, we have

Ã′Σ̃0A = L′
1T
ΣVεL1T and δ′Ω−1

W δ = diag(Vε)
′L1T (L

′
1T
ΣVεL1T )

−1L′
1T
diag(Vε).

(v) Let us finally consider the LR statistic. By a second-order Taylor expansion around θ̂,

we have Qn(θ̂
c) = Qn(θ̂) +

1
2
(θ̂c − θ̂)′ ∂

2Qn(θ̄)
∂θ∂θ′

(θ̂c − θ̂), where θ̄ is between θ̂c and θ̂ compo-

nentwise, and the first-order term vanishes because of the FOC of the unconstrained FA-GMM

estimator. The second-order partial derivatives matrix of the GMM criterion is given by ∂2Qn(θ)
∂θ∂θ′

= 2
[
∂2ĝn(θ)′

∂θ∂θj
V̂ −1
g ĝn(θ)

]
j=1,...,(k+2)T

+ 2∂ĝn(θ)′

∂θ
V̂ −1
g

∂ĝn(θ)
∂θ′

. When evaluated at the consistent esti-

mator θ̄ = θn + op(1), the first term on the RHS vanishes asymptotically. Then, ∂2Qn(θ̄)
∂θ∂θ′

=

2J ′
0V

−1
g J0 + op(1). We get ξLRn = [

√
n(θ̂c − θ̂)]′(J ′

0V
−1
g J0)[

√
n(θ̂c − θ̂)] + op(1). By using

√
n(θ̂c − θ̂) =

 √
n(µ̂c − µ̂)

LH

√
nL′

H(ϑ̂
c − ϑ̂)

 + op(1), we get: ξLRn =

 √
n(µ̂c − µ̂)

√
nL′

H(ϑ̂
c − ϑ̂)

′

Σ̃−1
0 √

n(µ̂c − µ̂)
√
nL′

H(ϑ̂
c − ϑ̂)

 + op(1). By taking the difference between (G.3) and (G.6), we get:

ζLRn := Σ̃
−1/2
0

 √
n(µ̂c − µ̂)

√
nL′

H(ϑ̂
c − ϑ̂)

 = −Σ̃
1/2
0 Ã(Ã′Σ̃0Ã)

−1δ + Σ̃
−1/2
0 P ′Σ̃0J̃

′
0V

−1
g

√
nĝn(θn) +

op(1) = −Σ̃
1/2
0 Ã(Ã′Σ̃0Ã)

−1
[
δ − Ã′Σ̃0J̃

′
0V

−1
g

√
nĝn(θn)

]
+ op(1) = −RζWn + op(1), where
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ζWn := (Ã′Σ̃0Ã)
−1/2

√
na(θ̂) and R := Σ̃

1/2
0 Ã(Ã′Σ̃0Ã)

−1/2 with R′R = IT−1. Then, it follows

that ξLRn = (ζLRn )′ζLRn + op(1) = (ζWn )′ζWn + op(1) = ξWn + op(1). The asymptotic equivalence and

step (iv) imply ξLRn ⇒ χ2(T − 1, δ′Ω−1
W δ).

(vi) Let us check the conditions for establishing the validity of the Gaussian experiment. The

q.m.d. condition in Assumption 3 holds with f q
i (xi) = − 1

2σ̄2 [∇ logφi (σ̄
−1(xi −mi(θ0)))]

′∆ε

(σ̄−1(xi −mi(θ0))) by Assumptions A.8(a)-(b). We use yi = µ0 + F0βi + V
1/2
ε,n (

∑
j∈Bm

sj,iwj)

to show that the uniform bounds in Assumption 4 follow from Assumptions A.1 and A.2. Further,

Lemma 7 shows the CLT in Assumption 5. Besides, the FA-GMM test statistics are asymptotically

quadratic forms of 1√
n

∑
i g(yi, θ̃0), so that their subsequence weak limits are independent of Z⊥

n .

Then, Assumption 6 holds. Proposition 3 follows. Q.E.D.
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