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1 Introduction

Most financial institutions are now routinely using risk management systems to adequately
control their risks or to suitably allocate their capital. This has been impulsed by either
internal requirements (efficient use of capital invested by shareholders, development of
new business lines) or external constraints (Capital Adequacy Requirement of the Basle
Committee on Banking Supervision, prudential rules imposed by European or American
regulators on financial institutions). In this context Value at Risk (VaR) and expected
shortfall (ES) have become essential tools to assess riskiness of trading activities (see e.g.
JP MORGAN (1996), WILSON (1996), DUFFIE and PAN (1997), JorION (1997), DowD
(1998), StuLz (1998) for a detailed analysis and applications in risk management). From
a formal point of view, VaR is simply a quantile of the loss distribution over a prescribed
holding period, while ES is the expected loss knowing that the loss is above VaR.

Decisions concerning the reserve amount and the way of allocating the capital to cover
adverse market movements are directly linked to such risk measures. Appropriate risk
measurement tools should therefore be allowed to adapt to varying market conditions,
and to reflect the latest available information in a non-i.i.d. framework. Up to now most
of the risk management literature has focused on marginal VaR and marginal ES, i.e. risk
measures referring to marginal or stationary distributional features. 2 These are especially
suited for a long term view, but can be less valuable for short term adjustments.

In this paper our main concern is to propose conditional tools that will ideally comple-
ment marginal measures. Hence we develop estimators of conditional VaR and conditional
ES in a nonparametric framework when the conditioning information is made of past ob-
served returns. Our approach is similar in spirit to conditional parametric approaches
for VaR based on GARCH modelling of financial return series (see e.g. ALEXANDER and

LeicH (1997), BounOUKH, RICHARDSON and WHITELAW (1997), McNEIL and FREY

2For time dependent data marginal VaR and marginal ES are defined with respect to the stationary
distribution of the losses. We use the term conditional to refer to risk measures defined with respect to
conditional distributions instead of stationary distributions. In an i.i.d. setting we do not need to make a

difference between marginal and conditional risk measures.



(2000), or BARONE-ADESI, BOURGOIN, and GIANNOPOULOS (1998)). It is however more
flexible and permits to capture other market features than only changing volatility back-
grounds (for another flexible, but parametric, approach, see the CAViaR model of ENGLE
and MANGANELLI (1999)). We propose to enlarge the setting enough to support a broad
class of dependence structures, namely strong mixing. * The estimation procedure based
on a kernel approach is extremely fast and easy to implement. It basically only requires
the standard functionalities of any spreadsheet used in financial statement reporting.
This paper extends the nonparametric analysis proposed in a marginal framework by
GOURIEROUX, LAURENT and SCAILLET (2000) for VaR, and by SCAILLET (2004) for ES.
In fact our estimator for the conditional VaR is based on inverting a Nadaraya-Watson
type estimator 4 of the conditional distribution function for time series data. It is akin
to the estimator studied by CAT (2002) (see the references therein for other proposals °).
The latter relies however on a smoothing in the direction of the lagged values only and
not in all directions. Hence by construction our estimator provides smoother estimates,
which are better suited for graphical purposes. Asymptotically and for interior points,
i.e. quantiles not to far in the tails, properties of both estimators coincide. For boundary
points, the estimator of CA1 (2002) exhibits better asymptotic properties in the sense
of avoiding the so-called boundary bias. His estimator involves a heavier computational
burden since it requires estimating and optimizing additional weights aimed to correct for

this bias. Performance of both estimators should be close in practice because sample sizes

3This type of mixing conditions, also called a-mixing, is standard for time series since strong mixing is a
very weak condition on the dependence structure. Strong mixing sequences encompass dynamics generated
by most commonly used parametric models, see DOUKHAN (1994) for several examples, such as standard
ARMA models. GARCH models and stochastic volatility models can also be shown to be strong mixing

under some conditions (CARRASCO and CHEN (2002)).
4As noticed by CAI (2002), this type of estimator always produces conditional distribution function

estimates which lie between zero and one, and are monotone increasing. This is particularly advantageous
if an inversion of the conditional distribution estimator is used to deliver an estimator of a conditional
quantile.

5Note also that our paper is the first to consider nonparametric estimation of conditional ES.



are large for financial data % and the quantiles used in market risk management cannot be
considered as extremes.

Let us also remark that relying on VaR for risk measurement purposes has been re-
cently challenged by ARTZNER, DELBAEN, EBER and HEATH (1999) since VaR fails to
be subbadditive. This subadditivity property expresses the idea that the total risk on a
portfolio should not be greater than the sum of the individual risks, and is part of the
necessary requirements to be a coherent measure of risk in the sense of ARTZNER, DEL-
BAEN, EBER and HEATH (1999). ES can be shown to be a coherent measure of risk for
continuous distributions. 7 We further refer the reader to ACERBI and TASCHE (2002)
for an illuminating and precise mathematical discussion of several risk measures related
to what we call ES. Note also that another disadvantage of VaR is that it tells us nothing
about the potential size of the loss that exceeds it, while ES does.

Let us finally stress that when we speak about conditional VaR, we refer to a VaR
computed with respect to a conditional distribution. In the risk management literature
“conditional VaR” (see e.g. ROCKAFELLAR and URYASSEV (2002)) sometimes refer to
what we call ES. Since it seems that there does not exist a universally agreed terminology
we prefer to use ES to avoid the somewhat odd term “conditional conditional VaR” in
place of conditional ES. We could also have used TailVaR instead of ES as in ARTZNER,
DELBAEN, EBER and HEATH (1999). The term ES seems to be more in line with actuarial
practice.

The paper is organised as follows. In Section 2 we introduce the basic notations and
concepts underlying our framework. In Section 3 we give the form of the kernel estimators
for conditional VaR and ES, and provide the asymptotic distributions of these nonparamet-
ric estimators. An empirical application on several stock index returns, namely CACA40,
DAX30, S&P500, DJI, and Nikkei225, is provided in Section 4. Concluding remarks are

presented in Section 5. Mathematical developments are gathered in an appendix.

6This allows to use small values for the smoothing parameter and thus reduce the boundary area.
"On the contrary ACERBI and TASCHE (2002) find that simply taking a conditional expectation of

losses beyound VaR can fail to yield a coherent measure of risk when there are discontinuities in the loss

distribution. Assumptions underlying our smoothing approach rule out this possibility.



2 Framework

We consider a real-valued strictly stationary process {Y;,t €4} and assume that our data
consist in a realization of {Y;;t =1, ..., T'}. These data may correspond to observed returns
at several dates. They may also correspond to simulated values drawn from a parametric
model (VARMA, multivariate GARCH or diffusion processes), possibly fitted on another
set of data. Simulations are often required when the structure of financial assets is too
complex, as for some derivative products and credit sensitive instruments. This, in turn,
implies that the sample length T can sometimes be controlled, and asked to be sufficiently
large to get satisfying estimation results.

Let us take a positive integer n, and let 0 < 74 < ... < 7, be integers, so that we
define Z, = (Y7, ...,Y;_+,). In particular we may take 7y = 1, ..., 7,, = n, which gives
Zy = (Yi-1, ..., Yi—pn)". In the following we define conditional objects w.r.t. Z;, i.e. lagged
returns. We denote by f(y, z), F(y, z), the marginal p.d.f. and c.d.f. of (Y3, Z;)’, while the
conditional p.d.f. and c.d.f. are written f(y|z), and F(y|z), respectively.

The conditional VaR knowing that past returns Z; are equal to ( € IR" is formally

defined by the equality

where p is the loss probability. The conditional VaR is a function of the loss probability,
which typically ranges from 1% to 5%, while stock returns are usually measured over a

one day period or a ten day period. Expression (1) which can be rewritten
PY; < =VaR((,p)|Z: = ¢] = F(=VaR((,p)[C) = p,
gives the relationship

Q(C,p) = —VaR((,p), (2)

between the quantile Q((,p) of the conditional distribution of Y; and VaR((,p).
The conditional ES is defined as the conditional expected loss knowing that the loss is

above the conditional VaR:

E[=Yi| =Y: > VaR((,p), Z: = (] = E[-Y1|Y: < Q((,p), Zt = (] = m(Q((,p), () (3)



3 Kernel estimators of conditional VaR and ES

We start with the definition of the kernel estimators before moving to their asymptotic

distribution.

3.1 Definition

From (2) and (3), we see that we are in fact interested in estimating conditional quantiles,
and conditional expectations knowing that we are below conditional quantiles.

For a quantile of order p € (0,1), we assume that the cumulative distribution function
F(.1G) of Y; given Z; at distinct points ¢; € R", i = 1,...,d, is such that the equation
F(y|¢;) = p admits a unique solution for each of the ¢; denoted Q((;,p).

For conditional expectations, we look at the quantities

m(Q(Gi,p), G)f(G)p = —EVi|Y: < Q(Gi,p), Ze = Glf(G)p (4)

at distinct points (; € R", i =1,...,d, where f denotes the p.d.f. of Z,.

Let kij(u) be a real bounded and symmetric function on R such that
/k‘ij(u)du: 1, 1=1,...,d, j=1,...,n,
and
Ki(w; BD) = T ki (uj fhig), i=1,....d,

where h(*) is a diagonal matrix with elements (hij)j—; and determinant |h®)] (for a scalar
x, |x| will denote its absolute value), while the bandwidths h;; are positive functions of T

such that
|hD |+ (T|R®)™" - 0 when T — oo.
In addition, let [ and h or [; and h;, i =1,...,d, satisfy the same conditions as any of
the k‘ij and hij.
The p.d.f. of Z; at (;, i.e. f((;), will be estimated by
1G] = (T|h])” Z Ki(G — Zi; b)),

t=1+7n



while the p.d.f. of (Y3, Z;) at (&5, (i), ie. f(&5,¢i), will be estimated by
1661 = TO) 3 i Y0)Ki(Gi — Zish®).
t=1+7n

Hence, estimators of the conditional cumulative distribution of Y; given Z; = (; at

distinct points §;, j = 1,...,d, are obtained as
. & N
(16 = [ [t Glau/[1:6] = 9(65,6)/1: 61, o)

calling ¢(&5,G) = [o & f(u,C)du. The first derivatives with respect to & of F(£|¢;) will
be denoted by f(£]¢;). Based on (5) and taking hj = h, I; = I, the conditional quantile
Q(G,p), namely —VaR((;,p), can be estimated by

Q(Gi,p) = yienlﬁ {y L F(y|G) > p} -

Finally, to estimate the conditional expectation of —Y; given Y; < Q((;, p) and Z; = (,

we will need the following estimate of (4):
Q(Gi-p) '
—/ [Ye;u, Gildu = —(Th|h® )~ / Z Yil(h™ Y (u — V) K;i(G — Zi; b du,
— - t=14+7,

so that the conditional ES can be estimated by

. Q(Gi-p) o
m(Q(Gip), ) = —/_ [Yisu, Gildu/([1; Glp) = —9(Q(G, p), G)/([1; Glp)-

(e °]

If a single Gaussian kernel k;;(u) = ¢(u) and a single bandwidth h are adopted, we

simply get:
Z Y@( Cz;h)_ >ﬁ@(<@j hY;f TJ>
QG p), G) = — T = ,
%, t—T;
3 Mo (25)
t=147, j=1

where ¢ and ® denote the p.d.f. and c.d.f. of a standard Gaussian variable, respectively.



3.2 Asymptotic distribution

The asymptotic normality of kernel estimators for conditional VaR and ES can be estab-
lished under suitable conditions on the kernel, the asymptotic behavior of the bandwidth,
the regularity of the conditional expectations and densities, and some mixing properties
of the process. Below we mainly follow the presentation of ROBINSON (1983) (see e.g.

BIERENS (1985) or Bosq (1998) for alternative sets of assumptions).

Assumption 1 (kernel and bandwidth)

(a) Bandwidths satisfy |h®|[|hD||*T — 0.

(b) Kernels and bandwidths satisfy |kij(u)| < C(1 + |u])~0+@i/m) - and ||p@)||ntwi=2 <
CIh D, w; > 2.

Assumption 2 (process)

(a) The process (Y;) is strong mizing with coefficients oj such that > = all_Q/H =O(N 1),
as N — oo, while E|Y;|? < oo, for some 6 > 2.

(b) For each (;, we have f(¢;) >0 and f(Q((i,p)|¢i) > 0.

(¢) Second order partial derivatives for the p.d.f. of (Yi, Z;) are continuous in neighbour-
hoods of all pairs (&;,(;) where estimation is performed.

(d) The p.d.f. of (Z;, Zsys) exists and is bounded in a neighbourhood of all pairs (¢, (j),
i,7=1,...,d, uniformely in s > 1.

(e) The conditional expectation m(&, z) is twice continuously differentiable at & = Q((;, p)
and z=(;, 1 =1,...,d.

(e) The conditional expectation H(E,2) = E[Y2|Y; < &, Z; = 2|, is continuous at & =
Q(G,p) and z=(;, i =1, ...,d.

(f) The conditional expectation E[|Y:|"|Y: < &, Zt = 2], is bounded fory > 0 at & = Q((i, p)
and z = (;, 1 =1,...,d.

Let S and S be the d dimensional vector with components S;/V;* and S;/V;?, respec-

tively given by:
S = (@D {QG,p) - QGp) |

8



,  p(—p)ki
= RO QG I

and

S = (@O QG ), G) = mQ(G,p),G)

VP o= WZ)P (H(Q(Ci;p)7Ci)_m(Q(Ci;P)>Ci)2P
o m(Q(Ci7p)7Ci)2 Qm(Q(Clap)aCl)m(Q(Clap)acl)
+ m(f(@(cz,p)\ci)? y QGG ))

with m(Q (G, p), G) = ElYilly, ol Ze = G| and r; = / H k2, (u)du;.

Proposition 1 Under Assumptions 1 and 2(a)-(d), S converges in distribution to a vector

of independent standard normal random variables.

Proof: see HENRY and SCAILLET (2000) and the developments in the proof of Propo-

sition 2.

Proposition 2 Under Assumptions 1 and 2, S converges in distribution to a vector of

independent standard normal random variables.

Proof: see Appendix.

Consistent estimates of asymptotic variances V;? and V;? may be derived after replace-
ment of the various terms by adequate density and conditional moment kernel estimators.
However block or local bootstrap procedures (see the review of BUHLMANN (2002)) reveal
more appropriate in small samples to build pointwise confidence bands.

Finally, let us remark that all asymptotic results will not be affected if simulations of
a parametric model are used as input data, when estimated parameters satisfy the usual
rate of convergence. The number of simulations could then be chosen large enough to be

on the safe side of asymptotic theory.



4 Empirical illustration

This section illustrates the implementation of the estimation procedure described in Sec-
tion 3. The empirical illustration concerns data on stock index returns. We analyze five
major stock indices: CAC40, DAX30, S&P500, DJI, and NIKKEI225. The data are one
day returns recorded daily from 03/01/1994 to 07/07/2000, i.e. 1700 observations. Table
1 gathers the summary statistics for these data including the empirical marginal VaR (loss
quantile of level p) and the empirical marginal expected shortfall (empirical mean of losses
above VaR divided by the probability of occurrence) for a loss probability level p equal
to 5%. We may observe that European and Japanese indices are riskier than US indices

from a marginal point of view, even if the kurtosis is larger for the latter.

Table 1: Summary statistics of stock index return data

CAC40 DAX30 S&P500 DJI  Nikkei225

mean .001 .001 .001 .001 .000
st. dev. .012 013 .010 .010 .014
skew. -.157 -.498 -.440 -.546 .066
kurt. 1.685 3.267 5.591 5.491 3.243
median .000 .001 .000 .000 .000
VaR .020 .022 .016 015 .023
ES .028 .031 023 .023 .031

To conduct the nonparametric analysis we have selected a single bandwidth value
according to the usual rule of thumb (empirical standard deviation times 7 /%) and a
single Gaussian kernel.

We start with the European indices, namely CAC40 and DAX30. Figures 1 and 2
report conditional VaR and conditional ES with a 5% loss probability level. The left
columns contain estimates for a single conditioning variable equal to a one period lagged
return. Pointwise confidence bands at 90% are also provided. They are built from a
block bootstrap procedure (KUNscH (1989)) with a block length [ of 11 data (this length

corresponds to the rule of thumb I = T/3 given in BUHLMANN (2002)). The right columns
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give estimates with one period and two period lagged returns as conditioning set. The
conditioning values are taken between the first and third quartiles of the return data.
Outside this range, the estimation becomes very unstable due to the lack of observations.
Conditional VaR and conditional ES of the left column are U-shaped for CAC40. Hence the
risk tends to be lower when yesterday return is close to the empirical average and larger
otherwise. This means that CAC40 is likely to correct strongly when a large positive
return occurs the day before, or to fall deeper when a large loss has already occurred the
day before. DAX30 does not share this property. The CAC40 U-shape is inverted in the
right column when we consider very negative values of the two period lagged return. A
third large loss is thus less likely when two losses have already been successively endured.
For DAX30 this is not observed, and the second conditioning variable seems to bring less
information (flatter surfaces).

Let us now proceed with US indices, namely S&P500 and DJI. Figures 3 and 4 show
a similar decreasing behavior in their left column. Hence we do not see a tendency to
strongly correct after a large upmove. Both indices differ in their right column. A third
large fall of S&P500, resp. DJI, is more, resp. less, likely after two successive downmoves.
Besides the more diversified S&P500 exhibits flatter surfaces than the less diversified DJI.

Finally we find on Figure 5 the same U-shape for the Nikkei225 as for CAC40, but not

the inversion when we consider very negative values of the two period lagged return.

5 Concluding remarks

In this paper we have proposed simple nonparametric estimation methods of conditional
VaR and conditional ES. The estimation procedure relies on a kernel approach in the
context of a general stationary strong mixing process. These estimators have been proved
to be empirically relevant in the analysis of stock index returns. We think that they
complement ideally the existing battery of risk management tools since they allow revealing
the very different types of conditional risk structures present in the data. Eventually we
should probably have supplemented our nonparametric methodology with some validation

method to be fully convincing about its utility. We leave this interesting, but difficult,

11



task for future research since there is no simple and efficient ways to validate statistically
a nonparametric model in the context of conditional VaR and conditional ES as opposed

to the case of marginal VaR and conditional means.

12



APPENDIX

Proof of Proposition 2

Let us adopt for a while the compact notations:

Qi=QG,p),  di=08(Qi¢), mi=m(QiG),  fi=f(G)
Using the expansions
Qi G) = Qi G)+ Ve Qi, Gl {Qz - Qi},
F(QilG) =p = F(Qil¢)
= F(Qil6) + F(Qile) {Qi - @i},

and
F(QilG) = F(QilG) = B {di — i} — 4By * {[13G] — £},
where
Qi — Qi <1Qi — Qil, |Bi — fil <|[1;G] — fil, 1A — ¢i] < | — i,
we get
—b(Qi, G)/[1;G] —mip = B {—(Qi, &) — mifi +w3{2 bi — i
$(Qi,G)/[1:G)) = mip (=0(Qu.C) —mafin} + 5= {6 — i}
(f(QlK_l) 1 1= {[ 7<1] fl}a
where |C; — m; fip| < | — 6(Qs, G) — ma fip)-
We need to show that
(TIRON)Y2 {~E¢(Qi, &) — my fip} — O, (6)
(TR {Edi - ¢i} — 0, (7)
(TR {E[L;G] - fi} — 0. (8)

13



We have:

E(Qi,¢) = /]R"“/ (ThIBD) wl(h (= ) Ki (G — X hD) F(w, N) dudAdw
_ “ = o) A h dud\d
= [ | = B @)K D) (= e, G = KO dudr e
Qi 2
= —mifw+ [ wu{%f@(u,@) Jp i) de
+Z s u@/ zg(w)w}dwo(h%mfx(h%))

In the same way,

E¢; = w/ { f<f§>u<>/R [(w) duw

Z z]f(gg / kaij(w)dw}du—ko(hQ+mjax(h§j)),
and
B[1iG] = fﬁz Y806 [ b e+ olma ().

This proves the three stated results (6)-(8) using | |||h®|*T — 0.

Now following the construction in ROBINSON (1983) Theorem 5.3 step by step, we take
gt = —Ylly,<p, Gt = —Yt gt, for some D, 0 < D < oo, and also Wiy = g:Lit, Wir =
GiLiy, with Ly = Klt/ (u —Yy))du, Kix = K;(¢; — Z; h(i)). We further introduce
Vie = Cz(VVzt—EVVzt), Vitar = Ci+d(Lit_ELit)7 Vigoar = Ci+2d(Kit—EKit), where ¢;, ¢j1q,
Ciyad, @ = 1, ...,d, are arbitrary constants. Then consider Sp = (T|h®|)=/2 L, Z?il Vit.
Since V[(T|RD|) 125>, W] — 0 as D — oo, uniformly in large T, we only have to

show that St has, for fixed D, an asymptotic normal distribution.

14



First let us put 04 = limr_eo E[VieVje] /(|BO[|WD)Y2 0,5 =1, ..., 3d. We have
= 2 HP T =2 kb . , = 2 f.
Oi3 = € /’{zH@‘ fzpa Oitdi+d = Cier/’{zﬁbl; 0i42d,i+2d = Ci+2d/€7,fl7

Oiitd = CiCirakimy fip, Oiitad = CiCiyoakim? fip, Oitdited = CitdCit2dKiPi,
for i = 1,...,d, where mP = E[—E][|}Q\§D|Yt < Qi,Zy = (), HP = E[YE]I\YASDDQ <
Qi, Z; = (], and 055 = 0, otherwise.

Second the continuity of m; and H; implies the continuity of m? and HP. Hence

the central limit theorem of lemma 7.1 in ROBINSON (1983) valid for bounded V;; may be

applied to S7. We get the final stated result of the proposition since mP — m;, HP — H;,

)

by letting D — oo, by using the convergence in probability of
Ai — i, B; — fi, Ci — m; fip,
Qi—Qi,  [YQi,Gl—mifi,  F(QilG) — F(QilG),
where m; = EYilly,—q,|Z; = (], and by computing

(l m; fi __ mifigi _mifip>
fi f(QilG)f? f(QilG) f} f?

Hifip mifip mifip

mifip G ®i

mifip G fi
(l mi fi __mifigi _mifip>/
fi f(QilG)f? f(QilG) f} f?

_ Hip  mip? 9 3 pi 2m;m;p
-~ fi fi " (1 fi) ((f(QiKi)fi)Q " f(Qi|Ci)fi> ’
4 m

7 (H mip+(1—p) (f(Qi|<i)2+f(Qi|Ci)>>’

from ¢;/fi=p
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