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Abstract

We investigate the mean reversion of the naphtha crack after large price moves on
daily data over 2014-2024. Our non-parametric estimation of the dynamics of daily
changes assuming a univariate di�usion process shows that the reversion strength
increases non-linearly after daily moves exceeding a certain threshold. We perform
Monte Carlo simulations to study the duration for which the reversion is likely to
remain active. We then backtest corresponding trading strategies. We calibrate
parameters of the strategy using grid search while controlling for multiple testing.
On average the tested strategies deliver positive returns after transaction costs. We
are able to select a subset of outperforming strategies generating robust positive net
returns. The existence of positive returns can be explained by di�erences in liquidity,
execution speed, and categories of participants in the naphtha and Brent markets
constituting the two legs of the naphtha crack.

Keywords: oil derivatives, naphtha crack, statistical arbitrage, mean reversion
JEL Classi�cation: G13, G14, G15, G17, G18

1. Introduction

The �nancial investment world considers oil mainly as an alternative asset class
that can be used as a hedge against in�ation or geopolitical risks, and a constituent
of wider commodity indexes. However, �nancial crude oil and oil product contracts
are also important tools for physical players such as oil majors, physical traders, or
re�ners to hedge against �at price �uctuations or lock economics such as geographical
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arbitrage or re�nery margins. The available CME and ICE1 futures contracts are only
a subset of the �nancial instruments used by the physical oil industry. A large number
of forward contracts called 'swaps' in the industry have until not long ago existed only
as pure over-the-counter (OTC) contracts and continue to transact mostly as block
trades through broker markets. The academic literature (see Section 2 below) has
looked at quantitative trading strategies in petroleum contracts. However, existing
research has focused on exchange-traded contracts as the understanding of how OTC
oil derivatives are being used remains often understood by specialised players, and
data is harder to obtain. Studies of OTC markets exist, but have tackled mainly
market design from a theoretical perspective and the empirical investigations have
looked at other markets such as interest rates or foreign exchange.

In this article, we investigate precisely this relatively unexplored area by studying
the European naphtha crack contract that trades virtually only o�-exchange and is
used mainly by participants involved in physical oil activities. The naphtha crack
is de�ned as the di�erence between the price of the intermediary petroleum product
called naphtha and the price of Brent crude oil. Our study uses daily data over the
period 15/05/2014 to 14/02/2024. We scale the raw data to account for periods of
changing volatility. Similarly to Prigent et al. (2001), we estimate non-parametrically
the drift and di�usion coe�cients of the naphtha crack daily changes assuming the
corresponding process follows an arithmetic Brownian motion. The results indicate
the presence of signi�cant mean reversion, with naphtha crack prices reverting more
strongly in a non-linear fashion after exceeding a certain threshold. Next we perform
Monte Carlo simulations to get insights into the duration of the reversion e�ect. The
results suggest that most of the reversion takes place the day following a large price
move. In light of the above �ndings, we design and backtest trading strategies to
check if the naphtha crack mean reversion property can be exploited to generate
robust positive returns. We account for multiple testing when assessing di�erent
combinations of strategy parameters using the False Discovery Rate (FDR) devel-
oped by Benjamini and Hochberg (1995) and applied to selecting technical trading
strategies on equity data in Bajgrowicz and Scaillet (2012). We use k-fold cross-
validation in our backtest to assess the robustness of our results regarding di�erent
strategy types and standardisation methods of the raw price changes. Transaction
costs derived from actual broker and exchange fees as well as typical bid-ask spreads
and worst case scenario slippage are included in the strategy returns computations.
We are able to identify a number of strategies generating signi�cant positive returns.
We also show that our trading strategies outperform benchmark dummy strategies.

1CME and ICE are the two main petroleum futures exchanges.
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Our backtest therefore shows that the insights from non-parametric estimation can
be exploited in real life. Further con�rming the robustness of our �ndings, the sim-
ple average of the performance of the strategies in the entire universe we consider is
positive after accounting for transaction costs.

The naphtha crack being the di�erence between the two outright contracts of
respectively naphtha and Brent, our work is related to Gatev et al. (2006) who study
pairs trading strategies in stocks. As argued by Gatev et al. (2006), the existence
of successful short term mean reversion strategies points towards ine�ciencies in the
market. By trading the mean reversion, the arbitrageur reduces these ine�ciencies
and gets rewarded for enforcing the Law Of One Price. One candidate explanation
for these temporary market ine�ciencies is the di�erence in liquidity and execution
speed between the two legs of the naphtha crack. Brent futures prices react quickly
to news as they are traded by a variety of players including from the �nancial invest-
ment community and algorithmic trading, and trade execution happens principally
on electronic platforms. On the other hand, naphtha prices need more time to ad-
just given contracts transact through brokers connecting a much smaller number of
actors consisting mainly of physical players. As a result, liquidity is more limited in
naphtha versus Brent. The low liquidity alone can also explain large price moves and
the subsequent mean reversion. Finally, naphtha often trades as a spread to other
products like propane or gasoline. Sharp movements in those markets can cause the
naphtha crack to temporarily deviate from its fundamental value.

The reminder of the paper is organised as follows. Section 2 reviews the existing
literature on the OTC markets, mean reversion arbitrage strategies and continuous-
time models based on the Brownian motion (di�usion processes). Section 3 describes
the naphtha crack contract and discusses di�erences between the Brent and naphtha
markets, and explains our methodology to account for periods of changing volatility
and the expiry roll. Section 4 presents results of the non-parametric estimation of
the drift and dispersion coe�cients, and insights from the Monte Carlo simulations.
Section 5 describes results from the trading strategies backtest, and discusses po-
tential causes for the observed temporary market ine�ciencies. Section 6 provides
concluding remarks and future research ideas.

2. OTC markets and commodities trading strategies literature

2.1. Over-the-Counter markets

The Dodd-Frank Wall Street Reform and Consumer Protection Act enacted in
2010 in the wake of the global �nancial crisis and corresponding European regulations
enacted in 2012 have resulted in new regulations of OTC derivatives (EU Regulation
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No 648/2012, 2012; EU Regulation No 151/2013, 2013). The resulting changes have
been studied in a number of academic articles. Bellia et al. (2024) investigate whether
the regulatory changes following the 2008 crisis have indeed favored clearing of OTC
derivative contracts. The study is based on regulator data of sovereign credit default
swap (CDS) transactions, which are cleared on a voluntary basis. Babus and Kondor
(2018) propose a model for OTC trading and price information di�usion where each
dealer strategy is represented as a quantity-price schedule. Glode and Opp (2019)
compare the e�ciency of OTC markets to that of centralised limit-order markets,
assuming that trader expertise is endogenous and assuming asymmetric information
among traders. Glode and Opp (2019) �nd that the OTC market is less competitive
and more strongly bene�ts well-connected core traders. Lee and Wang (2018) build
an OTC market model and �nds that closing the OTC market can improve welfare
by mitigating ine�ciencies caused by search frictions and dealers' market power,
particularly for the most heavily OTC-traded assets. Cartea et al. (2022) build an
OTC market model and examine the potential for arti�cial intelligence algorithms to
facilitate collusion in OTC �nancial markets but �nd that collusion is unlikely. Ehlers
and Hardy (2019) look at the growing importance of OTC trading of interest rates
derivatives. Ehlers and Hardy (2019) argue that regulatory initiatives promoting
central clearing and electronic trading alongside advances in compression services
have driven a shift from exchanges to OTC markets. Huang and Martin (2018)
investigate pairs trading strategies on a variety of assets including three OTC traded
currencies. The above shows that OTC trading is primarily examined from the
perspective of theoretical market models and the few empirical studies do not focus
on commodities markets, in particular oil contracts that we target in this paper.

2.2. Pairs trading and trading strategies in commodities markets

Our study of trading strategies on the naphtha crack which is the di�erence be-
tween the price of naphtha and Brent contracts can be related to the concept of
pairs trading. The fundamental paper of Gatev et al. (2006) identi�es stocks trading
in pairs and investigates a trading rule exploiting the mean reversion of the spread
between the two stocks forming a pair. Gatev et al. (2006) are able to identify prof-
itable pairs, but note that the pro�tability declines over time likely due to increased
hedge funds activity. The study argues that the excess returns generated by pairs
trading is a compensation for arbitrageurs enforcing the Law of One Price. Ad-
vances in machine learning have enabled more sophisticated approaches to selecting
pairs trading rules, with for instance Kim and Kim (2019) who use deep reinforce-
ment learning to optimise thresholds and �nd that it improves performance relative
to constant thresholds methods. Credit markets are also prone to pairs trading.
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Prigent et al. (2001) study the spread between U.S. corporate and Treasury bonds
by means of an empirical study with both non-parametric and parametric estima-
tions of a functional arithmetic Brownian motion model. The authors also propose
their own model for credit spread indices, building on the work of Stanton (1997).
Another sector that can be studied under the prism of pairs trading is commodi-
ties markets where a multitude of product, quality and geographical spreads can be
traded. Those spreads typically mean revert as physical traders exploit open arbi-
trage opportunities, and fundamental supply and demand factors adjust to balance
physical markets. Holmes et al. (2013) study gasoline market integration in the US,
observing di�erent prices at state level and studying their convergence towards a long
run equilibrium, demonstrating the Law of One Price in a physical setting. Ohana
(2010) explores pairs trading between US heating oil and natural gas futures. Ohana
(2010) decomposes daily price movements into seasonal, short-term, and long-term
components, and �nds that heating oil prices are a leading indicator in the short
term and that both commodities in�uence long term forward prices symmetrically.
Murat and Tokat (2009) attempts to forecast crude oil price movements using the
3-2-1 crack spread which is a very simple re�nery margin indicator computed as two
barrels of gasoline plus one barrel of heating oil minus three barrels of WTI crude
oil. The study �nds that after 2003 there is Granger-causality between the simple
margin proxy and future crude oil prices. Shen et al. (2020) study mean reversion
on various non-petroleum Chinese commodities futures pairs. Similarly, He et al.
(2023) investigates 47 commodities traded in the Chinese commodity futures market
including three oil and petroleum products contracts using intraday data, but their
algorithm is not able to beat the the benchmark of holding the Wenhua Commodity
Index. Vaitonis and Masteika (2017) study high frequency data on futures contracts
for natural gas, Brent crude oil, WTI crude oil, New York Harbor ULSD, and New
York Harbor gasoline over the month of May 2015. Vaitonis and Masteika (2017)
identify pairs and apply a mean reversion trading strategy that is able to generate
positive returns. However, transaction costs are not taken into account. Lubnau
and Todorova (2015) use a similar approach but focus on time spreads of WTI crude
oil, natural gas, heating oil and gasoline futures rather than cross-commodity pairs.
Using Bollinger bands, the authors are able to identify strategies yielding positive
pro�ts. The academic literature has studied trading strategies in commodities mar-
kets extensively, but mainly looking only at exchange-traded futures contracts. It
leaves OTC-traded energy contracts as an unexplored area.
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2.3. Stochastic modelling and commodities prices

Stochastic processes have been widely used in �nance. The Black-Scholes model
for option pricing has become a cornerstone of �nancial theory and practice, and is
based on the assumption that the price of the underlying follows a geometric Brow-
nian motion. However, a geometric Brownian motion is not ideally suited to com-
modities, as these often do not follow exponential growth and can exhibit negative
prices, especially with spread contracts. Stanton (1997) develops a non-parametric
continuous-time di�usion model for processes that are observed at discrete intervals
and applied it to Treasury Bills. Schwartz (1997) studies three Ornstein-Uhlenbeck
based models for copper, oil, and gold, and �nds strong evidence of mean reversion.
Brooks and Prokopczuk (2013) investigate six commodities including crude oil and
gasoline using variations of the arithmetic Brownian motion with jumps and compare
them against equity markets. There is an ongoing debate about the best approach to
modelling spreads: whether to model the two legs separately, or use a model directly
for the spread itself. Prigent et al. (2001) argue that the former can lead to adding
up errors if the residuals are positively correlated. Furthermore, they point out that
a spread can be in�uenced by other factors such as relative liquidity di�erences be-
tween the two legs, a key behaviour that is better captured by modelling the spread
directly. Mahringer and Prokopczuk (2015) investigate this fundamental question in
the context of pricing heating oil and gasoline crack spread options by comparing
the performance of univariate and bivariate models. They �nd that modelling the
crack spread directly yields lower pricing errors than using a more complex bivariate
model, this being true in-sample and most importantly out-of-sample. In this paper,
we use the univariate approach to model the naphtha crack spread directly.

3. Petroleum derivatives markets and standardisation of naphtha crack

price changes

3.1. Naphtha versus Brent markets and participants

Except for the 5 futures contract trading on the Chicago Mercantile Exchange
(CME) and Intercontinental Exchange (ICE), other petroleum derivatives have his-
torically traded as pure OTC forward contracts referred to as 'swaps' in the industry.
In the wake of U.S. Dodd-Frank and European MiFID regulations, swaps started be-
ing cleared on exchanges and that is now the case for virtually 100% of the transac-
tions. A crack or crack spread is a term used in the energy markets for the di�erence
between the price of a petroleum product such as heating oil or gasoline, and the
price of crude oil. The term crack is derived from the re�nery cracking process, and
trading crack spreads allows re�ners to hedge their price risk. In the present article,
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we focus on the European naphtha crack contract cleared on the ICE. Although it
can technically be traded on the exchange electronic platform WebICE, virtually all
transactions are executed through brokers. Block trades, de�ned as privately nego-
tiated transactions via brokers, made up more than 99% of the daily traded volume
over the �rst six months of 2024. The naphtha crack trades by month and is a cash
settled contract based on the di�erence between the Platts daily assessment price for
Naphtha CIF NWE Cargoes and the ICE daily settlement price for Brent 1st Line
Swap Future. It means that after expiry, the �nal settlement is computed as the
average of the di�erence between the above two prices over the month corresponding
to the maturity of the contract. Together with Argus, Platts is one of the main Price
Reporting Agencies (PRAs) whose role is to publish o�cial assessments of physical
transactions used either in physical deals or to price �nancial derivatives. At the
time of writing, the daily Platts assessment for Naphtha CIF NWE Cargoes re�ects
the mean value of naphtha for physical delivery 10-25 days forward from the date
of publication. Contrary to the naphtha contracts, the ICE Brent Crude futures
contract is widely traded electronically. Holding Brent futures can result in physical
delivery with an option to cash settle.

We have just seen that the two legs of the naphtha crack typically transact
on fundamentally di�erent types of markets, i.e., broker market versus electronic
trading on exchanges. The di�erences extend to the players active in the respective
markets. Naphtha is a liquid un�nished petroleum product between the lighter gases
(i.e., propane and butane) and the heavier jet/kerosene. It is primarily produced
in re�neries from the distillation of crude oil, but can also be obtained in re�nery
secondary units, or directly from �eld production after being processed at a natural
gas liquids plant. Naphtha is used for producing gasoline, either via direct blending
or after being processed in a reformer. The other main uses are as a feedstock in
the petrochemical industry for producing ole�ns in steam crackers or aromatics after
going through a reforming process, or as diluent for heavy crude (e.g. from Canada
or Venezuela) to reduce the viscosity and facilitate transport. The wide range of
naphtha demand outlets results in a diversity of players with di�erent utility functions
being active in naphtha �nancial derivatives. We have mentioned re�ners hedging
their economics, such as geographical arbitrage or re�nery margins, by trading cracks.
Naphtha outright swaps are also the primary instruments to hedge physical cargoes
pricing of the Platts naphtha quote against �at price movements. The following
simpli�ed example explains the concept. A company buys a cargo of naphtha and
agrees to pay the average of the Platts naphtha quotation minus a discount over the
5 days around the load date. To protect itself from �at price moves that are most of
the times unrelated to naphtha fundamentals, the company sells naphtha swaps for
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one �fth of the volume on each of the 5 pricing days. The company then �nds a buyer
in another region and agrees to sell the cargo at the average of the Platts naphtha
quotation plus a premium over the 5 days around the discharge date. The company
buys back its hedges on each day of the pricing window of the sale. Thanks to this
mechanism, the company has insulated itself from �at price moves between the time
of the purchase and the time of the sale. For example, if �at price drops between
loading and discharge, the company will sell its cargo for less than it bought it, but
it will make an o�setting gain on its hedges. Due to its use for making gasoline,
or the competition between naphtha and propane or butane as a feedstock for the
petrochemical industry, naphtha is also traded as a spread to gasoline or propane
swaps. A further instance where European naphtha swaps trade in connection to
another contract is geographical arbitrage. Given Asia needs to structurally import
naphtha from e.g. Europe and the Arab Gulf, market players use a Europe versus
Japan naphtha contract to lock economics. Also, re�ners or traders owning storage
capacity buy and sell naphtha time spreads again to lock their economics. The
consequence of this variety of players interacting with naphtha means that naphtha
prices can be more a�ected by drivers speci�c to naphtha, gasoline, or petrochemical
markets, than by what is driving crude prices. The majority of naphtha derivatives
transactions are carried out by players involved in a physical activity, e.g. oil majors,
trading houses, re�ners, terminal operators. Some hedge funds with no intention to
touch physical oil are setup to trade naphtha contracts, but it represents a minority.
High costs to get registered with authorities and the clearing entity, and go through
the approval process with brokers represent a signi�cant barrier to entry. Retail
investors are therefore absent from the market. The next paragraph provides numbers
on the resulting liquidity di�erence between naphtha forward contracts and Brent
futures.

Brent futures on the other hand are traded by a much larger variety of players. It
obviously constitutes one of the main hedging instrument for the physical petroleum
industry. Brent is used not only in relation to North Sea crude grades but is one of
the main benchmarks for pricing crude globally. While mostly only naphtha players
get involved in trading naphtha swaps, Brent is used by players from the entire oil
market spectrum from gasoline, to diesel and fuel oil. In addition to the physical
world, the �nancialisation of crude futures markets has increased the in�uence of
�nancial investors such as commodity index traders or hedge funds on the oil futures
price. ICE Brent futures are a major component of benchmarks such as the S&P
GSCI or the Bloomberg Commodity Index. The indexes are designed to be investable
by including the most liquid commodity futures, and are used by mutual funds
or exchange-trade funds (ETFs). Investors use them for portfolio diversi�cation
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purposes, as a hedge against in�ation or geopolitical risks. Investment money can
also �ow into Brent funds to collect the roll when crude oil is in backwardation.
Retail traders (i.e., non-professional traders) can directly trade Brent futures on their
accounts. Contrary to naphtha, there is no need to involve brokers. Most trading
happens electronically (97% of the daily volume on average during the �rst half
of 2024), including through algorithmic trading execution. Finally, retail investors
can also trade Brent futures on electronic platforms. As a result, Brent futures are
much more liquid market than naphtha swaps. For example during the �rst half of
2024, average daily traded volume of prompt-month naphtha swap was 1.4 Mio bbls
compared to 111 Mio bbls for the prompt Brent futures contract.

3.2. Contract roll and volatility standardisation

The data in the current paper is obtained from ICE for the European naphtha
crack referred to as Naphtha CIF NWE Cargoes (Platts) vs Brent 1st Line Future.
We use historical daily end-of-day settlement prices for the 15/05/2014 to 14/02/2024
period. Naphtha swaps are settled at 19:30 London time to match Brent futures
settlements. The historical data available from ICE starts in 2014, which corresponds
to when naphtha swaps started being cleared on the exchange. Pre-2014 naphtha
crack prices could probably be obtained from brokers. However, the older data would
need to be cleaned as there was no regulatory obligation to report it, and few people
had realised the value of data at the time. In the 1-2 days preceding expiry, naphtha
prices can be subject to strong volatility caused by squeezes in the physical naphtha
cargoes market, and become disconnected from crude oil prices. Lower liquidity
as a number of players square o� their positions ahead of expiry can also result in
sharp naphtha price moves. In order to not be a�ected by this expiry noise, and to
avoid having to deal with rolling the position from the prompt contract to the next
around expiry when we backtest trading strategies later in the paper, our naphtha
crack time series transitions to the next-month contract 5 days ahead of expiry. The
naphtha crack contract expires on the last day of the month prior to the contract
maturity month. Therefore, our time series corresponds to prompt-month naphtha
crack prices from the beginning of the month to 5 exchange business days before
expiry, and to the second-month contract over the last 5 days of the month.

The outright naphtha crack price is not stationary. Its level is driven by market
drivers including other product crack spreads or the relative price of crude oil versus
natural gas liquids (NGLs) such as ethane or propane. The present paper studies
daily changes in the naphtha crack, which display much better stationary properties.
As shown in Figure 1, naphtha crack daily price changes are subject to periods
of changing volatility. Volatility increased in 2020 due to the COVID-19 pandemic
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lockdowns that caused demand for transportation fuels to drop sharply while demand
for petrochemical products remained healthy on a global basis. Diesel and gasoline
cracks came o� while the naphtha was supported. The opposite phenomena took
place during the reopenings from lockdowns phases when re�ners had to resume
producing more transportation fuels again. Volatility increased again from 2022 on
the back of the con�ict in Ukraine, and as global �ows of naphtha had to be redirected
following the European Union ban on imports of petroleum products from Russia,
and the G7 group price cap sanctions. In order to account for the changing volatility,
we standardise the raw price changes using di�erent volatility measures. Gatev et al.
(2006); He et al. (2023); Lubnau and Todorova (2015); Shen et al. (2020); Vaitonis and
Masteika (2017) use a similar approach to account for periods of di�erent volatility
levels. It allows to make sure that the trading strategies we investigate in Section 5
do not generate a signal only during the periods of higher volatility.

We use the following notation for the raw daily naphtha crack change:

∆Raw
t = Ct − Ct−1, (1)

where C is the price of the naphtha crack in $/bbl. Throughout this paper, we
investigate three di�erent volatility standardisation methods. The �rst is a reactive
20-day rolling historical standard deviation. The second is a less reactive 60-day
rolling historical standard deviation. The third is a predictive volatility measure,
obtained from a daily one-day ahead GARCH(1,1) forecast (Bollerslev, 1986). We
need a volatility measure that is reactive but also not jittery so that the dynamics
of the raw signal around large daily changes are preserved. To help smooth each
normalising volatility time series, we apply an Exponentially Weighted Moving Av-
erage (EWMA) with α = 0.2. Finally, we re-scale the standardised price changes
in order to put them on the same scale and be able to compare reversion thresh-
old levels across the three volatility estimation methods. It is done by dividing the
standardised daily price changes series by its historical standard deviation (single
standard deviation value), and multiplying by the raw series historical standard de-
viation (single standard deviation value). The process of standardisation is described
as follows:

∆t =
∆Raw

t

Vol(Rt)
× std(Rt)

std(St−1)
, (2)

where ∆t is the standardised Delta at time t, ∆Raw
t is the raw Delta at time t. std(.)

is the population standard deviation, and Vol(.) is the chosen volatility measure
for the standardisation (20-day rolling historical standard deviation, 60-day rolling
historical standard deviation, or one-day ahead GARCH(1,1) forecast). The subset
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Rt is de�ned as Rt = {∆Raw
i | i = 0, . . . , t}. St−1 is de�ned as St−1 = {∆i | i =

0, . . . , t− 1} so as to avoid any look-ahead bias.
We test the standardised price change (Delta) stationarity using the augmented

Dickey-Fuller test with no trend or mean component, therefore testing the unit root
hypothesis on ∆t = ∆t−1 + ut. We cannot reject the null hypothesis for all three
standardisation methods. The stationarity of the series justi�es the use of the k-fold
cross-validation procedure in Section 5.1. Table 1 presents summary statistics for the
di�erent raw and standardised time series. The mean of the four time series is close
to 0. The standard deviations are all similar which was expected after the re-scaling
process. The skewness is approximately twice as large for the slow standardisation
method, and negative contrary to the other two normalisation methods. It can
be explained by the structural downward trend in the outright naphtha crack in
2022, and the fact that the slower volatility measures do not �lter out the initial
bursts of strong negative daily price changes. We can observe the relatively lower
kurtosis of the GARCH(1,1) standardisation. It con�rms that the predictive abilities
of the GARCH(1,1) model enables a more uniform standardisation across the range
of daily changes values, as the 20- and 60-day historical rolling standard deviations
introduce a time lag which causes the initial large price changes of volatility bursts
to undergo lesser standardisation. In the remaining of the paper, we sometimes omit
the "standardised" quali�er, and refer to the standardised time series simply as daily
naphtha crack changes (Deltas).

Raw daily changes Daily changes standardised using:
20-day std. dev. 60-day std. dev. GARCH(1,1) vol. forecast

Mean [$/bbl] -0.001 0.002 0.000 0.000
Std. dev [$/bbl] 0.58 0.58 0.58 0.58
Min [$/bbl] -3.90 -2.60 -3.50 -2.58
Max [$/bbl] 5.72 5.00 4.23 3.59
Skewness [-] 0.13 0.08 -0.23 -0.11
Kurtosis [-] 10.14 3.91 3.11 1.24
aDF stat [-] -10.70 -30.14 -22.86 -34.16

Table 1: Summary statistics of the time series. Raw statistics refer to the original naphtha crack
daily Delta time series in $/bbl units. 20-day standard deviation, GARCH(1,1), and 60-day stan-
dard deviation refer to the standardised daily Delta time series. aDF stands for the augmented
Dickey-Fuller test.

3.3. Fee structure and trading costs

The bid-ask spread on the naphtha crack typically ranges between $0.05/bbl
and $0.10/bbl during most of the day. The market is most active in the period of
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Figure 1: Naphtha crack daily price changes (Deltas) time series (top) and standardised price
changes (Deltas) time series (bottom) using 60-day rolling historical standard deviation.

time before the end of the Platts Market-On-Close (MOC) price assessment process
(16:30 London time). Liquidity increases during that time as discussed in Frino et
al. (2018). In addition to the bid-ask spread, broker and exchange clearing fees must
be accounted for in the transaction costs. Finally, there are negligible �xed costs
like exchange subscription fees. Broker fees may vary by broker and company but a
typical value for trading naphtha cracks is $0.01/bbl one-way. Clearing fees for the
Naphtha CIF NWE Cargoes (Platts) vs Brent 1st Line Future contract cleared on
ICE amount to $0.001/bbl one-way. Based on the above, we assume total one-way
transaction costs of $0.10/bbl when evaluating trading strategies in Section 5. It is
a realistic number for covering the spread between value and bid or ask, as well as
broker and clearing fees that occur in dynamic trading of the naphta crack. In case
a stop-loss is triggered, we add an additional $0.20/bbl for extra slippage.

4. Non-parametric estimation

Before designing a trading strategy, we apply a non-parametric approach to ex-
tract information about the dynamics of the naphtha crack, and in particular the
presence of a potential mean reversion. We assume the standardised naphtha crack
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Figure 2: Time series used for standardisation. The dotted line is the standard deviation of the
GARCH(1,1) one-day forecast, the dashed line represents the 60-day rolling historical standard
deviation, the full line stands for the 20-day rolling historical standard deviation.
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changes follow the stochastic di�erential equation (arithmetic Brownian motion)

d∆t = µ(∆t)dt+ σ(∆t)dWt, (3)

where Wt is a standard Brownian motion, and ∆t is the standardised naphtha crack
price change. We use the estimations for µ and σ proposed by Stanton (1997), and
applied by Prigent et al. (2001) to investigate the dynamics of credit spread indices.
Next we perform Monte Carlo simulations to study the duration of mean reversion
e�ects in the naphtha crack.

4.1. Density estimation

Similarly to Prigent et al. (2001), we estimate the densities of the standardised
daily naphtha crack price changes by means of a Gaussian kernel given by

f̂i(x) =
1

nh

n∑
t=1

φ(
x−∆t

h
), (4)

where φ(.) is the standard normal density function, n is the number of observa-
tions, and h is a smoothing parameter called the bandwidth. We estimate h via
10-fold cross-validation hyperparameter tuning. The resulting density estimations
are plotted in Figure 3 for the three standardisation methods.
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(b) GARCH(1,1) 1 day ahead stan-
dard deviation forecast

3 2 1 0 1 2 3 4
Standardised delta [-]

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 [-

]

standardisation: backwards std 60 days
Gaussian kernel density
percentiles: 0.5%, 99.5%

(c) 60-day rolling historical stan-
dard deviation

Figure 3: Gaussian kernel density estimation of the standardised price changes (Deltas). For each
standardisation method experimented, we show a histogram of the standardised prices change
(Delta) values in grey, overlaid by the kernel estimated density curve in black. 0.5 and 99.5 per-
centiles are depicted by vertical dashed red lines.

4.2. Drift estimation

We estimate the drift term using the Taylor series approximation presented in
Stanton (1997) and use the 3rd order expansion, since a higher order provides a better

14



approximation and no discontinuities are observed over the domain for this order.
The 1st and 2nd order Taylor series for the drift term are provided in Stanton (1997)
and are available upon request. The 3rd order drift term can be estimated using:

µ̂(x) =
1

6

(
18

∑n−1
t=1 (∆t+1 −∆t)φ

(
x−∆t

h

)∑n−1
t=1 φ

(
x−∆t

h

)
− 9

∑n−2
t=1 (∆t+2 −∆t)φ

(
x−∆t

h

)∑n−2
t=1 φ

(
x−∆t

h

)
+2

∑n−3
t=1 (∆t+3 −∆t)φ

(
x−∆t

h

)∑n−3
t=1 φ

(
x−∆t

h

) )
. (5)

Results shown in Figure 4 provide evidence that mean reversion is present. The
charts also show that the mean reversion e�ect increases in a non-linear fashion
with larger naphtha crack price changes, displaying a visible in�exion point after the
naphtha crack change exceeds a certain threshold. The in�ection happens around a
$1/bbl move in the naphtha crack, but the threshold depends on the standardisation
method and the sign of the price change.

4.3. Di�usion estimation

For the estimation of the di�usion term, we investigate several approximations
based on the derivations of Stanton (1997), namely Expectation-based and Variance-
based estimations of 1st, 2nd and 3rd order. Higher order Taylor expansions are prob-
lematic for higher values given the low number of data points, and are also subject
to discontinuities. The highest orders without discontinuities are the 2nd and 1st for
the Expectation-based and Variance-based estimations. Using an iterative formula-
tion of Equation 4, we generate 10 years of data using each of the two candidate
approximations for the di�usion term. We �nd that the 2nd order Expectation-based
approximation leads to unrealistic extrema (in the +/- $15/bbl range), whereas the
Variance-based approximation produces extrema that are in line with the historical
observations (in the +/- $4/bbl range). Based on those simulations and on com-
ments in Stanton (1997), we select the 1st order Variance-based estimation for the
remainder of the present paper given by the following equation:

σ̂(x) =

(∑n−1
t=1 (∆t+1 −∆t − µ̂(x))2φ

(
x−∆t

h

)∑n−1
t=1 φ

(
x−∆t

h

) ) 1
2

. (6)
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Figure 4 shows that the di�usion term increases with larger daily naphtha crack
moves. Combined with the shape of the drift function, it hints to a fast return to
the mean after large daily changes.

4.4. Monte Carlo simulations

Results of Section 4.1 have con�rmed that the naphtha crack is subject to mean
reversion, especially after large moves. In order to study the duration of the rever-
sion e�ect, we perform Monte Carlo simulations. We sample values above a given
threshold from the Gaussian kernel estimation of the density from Section 4.2. For
simplicity, we use a unique threshold set to $1.6/bbl for both positive and negative
naphtha crack changes. A visualisation of this process is provided in Figure 5. We
then generate 5 days of standardised naphtha crack changes using the iterative form
below of Equation 4 as described in Glasserman (2003):

∆t+1 = ∆t + µ(∆t)dt+ σ(∆t)
√
dt N [0, 1], (7)

where dt is equal to 1 day, N [0, 1] is a standard normally distributed random variable
and ∆0 is a random sample from the Kernel density estimation that exceeds the
prede�ned threshold set at $1.6/bbl. For µ and σ, we use the estimates presented
above. Given that Equation (7) is a model for the standardised daily naphtha crack
changes, we need to map the simulated trajectories back to "unstandardised" daily
changes. In order to achieve this reverse transformation, we use an OLS regression
and model the residuals using the distribution presented by Johnson (1949). This
process is further detailed in Appendix B. We perform 10,000 Monte Carlo iterations.
The results of these simulations are shown in Figure 6. Most of the reversion takes
place on the �rst day for all three standardisation methods. Holding the position
beyond the �rst day decreases pro�ts for two out the three standardisation methods.

5. Trading algorithm

Building on the insights provided by the non-parametric estimation and the
Monte Carlo simulations, we devise trading strategies that exploit the mean reversion
of the naphtha crack after a large daily move. We do so by backtesting a series of
trading rules, varying in terms of standardisation method of the raw daily naphtha
crack price changes, entry rule, performance measure, trigger level, and holding pe-
riod. In the selection process, we account for multiple testing and test the robustness
of the performance using a cross-validation setup. We assess the performance of the
selected strategies against two benchmark trading strategies. Finally, we discuss po-
tential causes of the temporary market ine�ciencies allowing our trading strategies
to generate positive pro�ts.
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(a) Drift: 20-day historical standard deviation
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(b) Di�usion: 20-day historical standard deviation
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(c) Drift: GARCH(1,1) day ahead volatility forecast
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(d) Di�usion: GARCH(1,1) day ahead volatility forecast
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(e) Drift: 60-day historical standard deviation
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(f) Di�usion: 60-day historical standard deviation

Figure 4: Non-parametric drift and di�usion estimations for each of the three tested standardisation
methods. The dotted, dashed, and solid lines correspond to respectively �rst, second, and third
order Taylor expansions. The histogram of the corresponding standardised price changes (Deltas)
series is shown in grey, the 0.5 and 99.5 percentiles are depicted by vertical dashed red lines.
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Figure 5: Sampling from the Kernel Density Estimation. The sampled values are shown in the
form of a grey histogram. The Gaussian kernel estimated density function from which the samples
are drawn is shown as the blue solid line. The de�ned threshold magnitude for negative and
positive standardised Delta is shown at -1.6 $/bbl and 1.6 $/bbl as vertical red dashed lines. The
standardisation series used in this example is the 60-day historical rolling standard deviation.
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(a) Monte Carlo simulations for the 20-day historical
rolling standard deviation standardisation.
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(b) Monte Carlo simulations for the GARCH(1,1) stan-
dard deviation standardisation.
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(c) Monte Carlo simulations for the 60-day historical
rolling standard deviation standardisation.

Figure 6: Monte Carlo simulations results for each of the three tested standardisation methods.
The average of standardised Delta obtained through the 10,000 Monte Carlo simulations is shown
as the orange dashed line. The blue solid line represents the average of the de-standardised Delta.
The blue area represents the interval containing 95% of the de-standardised Delta values. The red
horizontal dotted line represents the costs related to trading, estimated at $0.20/bbl.
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5.1. Backtesting framework, entry strategy, standardisation method, and performance
measurement

To assess the robustness of the trading strategies performance, we use a k-fold
cross-validation procedure. Similarly to He et al. (2023), we choose a 80% calibration
and 20% validation split, thus leading to a 5-fold cross-validation. The use of k-fold
as opposed to a rolling cross-validation is motivated by the stationary nature of
the standardised daily Delta time series, as shown in Section 3.2 with the augmented
Dickey-Fuller test and by the short-term nature of the trading strategies. Because we
test holding periods up to 5 days after the initial trigger, we ensure that no position is
initiated during the 5 days preceding the end of the calibration or validation period.

We investigate two trading strategies each having a di�erent entry rule. The �rst
strategy consists in entering a reverting position on the day that the standardised
daily change exceeds a pre-determined threshold, and holding the position for a pre-
determined number of days. The second strategy consists in waiting one day before
entering the reverting position, and also holds the position for a pre-determined
number of days. We call the two strategies respectively "immediate entry" and
"delayed entry". In both cases, we apply a stop-loss in case an open position exceeds
a $1.5/bbl loss, and a take pro�t rule when an open position exceeds a $3/bbl gain.
The insights from the non-parametric estimation of Section 4 indicate immediate
mean reversion on average over the full sample. We still test the "delayed entry"
strategy to check if there are periods where the reversal does not occur immediately,
i.e., when a large move in the naphtha crack carries some momentum the following
day before correcting later. As in the non-parametric estimation, we explore three
di�erent standardisation methods. The �rst is a reactive 20-day rolling historical
standard deviation. The second is a less reactive 60-day rolling historical standard
deviation. The third is a predictive volatility measure, obtained from a daily one-day
ahead GARCH(1,1) forecast.

We test two di�erent performance measures as the criterion to select the best com-
bination of entry strategy, threshold, holding period, and standardisation method.
The �rst measure is the total pro�t over the sample period Πtotal computed as the
sum of the raw daily naphtha crack changes when the strategy is generating a long or
short investment signal. The second measure is the average pro�t per trade Πper trade,
which is computed as the total pro�t over the entire sample divided by the number
of trades. Both performance measures are de�ned in Equations 8 and 9 below. Since
we include stop-loss and take-pro�t rules, we do not use volatility-dependent perfor-
mance measures such as the Sharpe ratio since the downside is strictly capped. Each
trading rule k, de�ned by a combination of performance measure, standardisation
method, entry strategy, threshold, and holding period, generates an investment sig-
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nal sk,t−1 for each prediction period t, L ≤ t ≤ T . sk,t−1 equals 1 for a long position,
0 for no position, and −1 for a short position. T is the number of days in the sample,
and L is the number of days needed to initialise the GARCH(1,1) model. We use
L = 200.

Πtotal
k =

T∑
t=L

sk,t−1∆
Raw
t , (8)

Πper trade
k =

1

n

T∑
t=L

sk,t−1∆
Raw
t , (9)

where n is the number of trades triggered over the sample period. In addition, we
add the transaction costs discussed in Section 3.3. As a reminder, these amount to
$0.10/bbl one-way, and an additional $0.20/bbl for slippage in case the stop loss is
triggered. The trading signal is generated using standardised daily naphtha crack
changes. However, the performance needs to be measured on raw price changes. For
ease of comparison between the calibration and the testing samples, we report the
annualised total pro�t when discussing the results.

5.2. Controlling for multiple testing during threshold and holding period selection

The optimal threshold and holding period are de�ned during the calibration phase
by testing di�erent combination for both parameters. We test thresholds ranging
from 0.8 to 2.0 by 0.1 increments, amounting to 13 values, and holding periods
between 1 and respectively 4 or 5 days depending on whether the entry strategy is
delayed entry or immediate entry. It is because we do not want to deal with rolling
an open position from one contract month to the next. With the immediate entry
strategy, it results in a universe of 65 combinations of parameters. With the delayed
entry strategy, there are 52 parameter combinations to test. For a given choice
of standardisation method, entry strategy and performance measure, the following
procedure is applied to select the optimal threshold and holding period over the
calibration sample. The trading signal is generated using standardised daily naphtha
crack changes, and the performance is computed on the raw price changes. Before
selecting the best performing combination of parameters, we test if the average of
the obtained returns are signi�cantly higher than 0 using a one sided z-test at size
level α = 0.05. Due to the large number of threshold and holding period parameter
combinations, it is necessary to control for multiple testing. To do so, we use the
False Discovery Rate (FDR) introduced by Benjamini and Hochberg (1995), and
applied to technical trading rules by Bajgrowicz and Scaillet (2012). As in Bajgrowicz
and Scaillet (2012), we assume block dependence of the tests to satisfy the weak
dependence condition. Indeed, for close threshold and holding period combinations
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the trading rules can possibly generate similar trading signals. However, for more
distant thresholds or holding periods the trading signals become independent. We
set the FDR at 10%. Among the strategies that pass the one sided z-test and the
multiple testing procedure, we select the threshold and holding period combination
corresponding to the strategy with the best performance (with respect to the chosen
performance measure). We then assess the robustness of the selected trading rules
performance in the validation phase.

5.3. Backtest results

We run cross-validations for 24 combinations of performance measure, scaling
type, and entry strategy. The results are shown in their entirety in Appendix A.
Out of these results, we select the strategies that have a higher than 50% win rate, a
positive net pro�t, and a share of successful cross-validations exceeding or equal to
80%. A cross-validation is considered successful if a statistically signi�cant combina-
tion of threshold and holding period is found and trades are triggered in validation.
Using this process, we are able to select 7 strategies generating robust positive perfor-
mance. Table 2 shows the performance numbers together with a number of statistics
such as the percentage of winning signals or the typical threshold levels. All pro�ts
reported include transaction costs and are thus referred to as net pro�ts. Across
these 7 best performing strategies, the average net pro�t per trade over the valida-
tion samples ranges between $0.25/bbl and $0.78/bbl. The average total yearly net
pro�t lies between of $0.54/bbl and $1.03/bbl, and the average win rate between
52.1% and 65.6%.

The threshold and holding period parameters selected during calibration depend
on the chosen performance measure. When using the total pro�t as the performance
measure, the median of selected thresholds lies between $1.45/bbl and $1.7/bbl, and
the median of the holding periods is 4 days. Using the average pro�t per trade criteria
results in selecting higher thresholds, ranging from $1.95/bbl and $2.0/bbl for the
median values. The median holding period is also slightly longer, reaching 5 days
in one occurrence. We also observe a relationship between the performance measure
and the standardisation method. The best strategies according to the total pro�t
measure use a reactive standardisation method (20-day historical rolling standard
deviation and GARCH(1,1)), whereas the pro�t per trade measure results in using
a less reactive standardisation (60-day historical rolling standard deviation) in most
cases. The average pro�t per trade measure is more selective, as one single trade
can deliver good performance according to this metric. On the other hand, the total
pro�t measure incentivises having more frequent trading signals. The slower 60-
day historical rolling standard deviation implies that the sudden extreme daily price
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changes are less smoothed, as shown in Figure 2. It is reasonable that a more selective
strategy favours a standardisation method that does not smooth outliers from a
sudden volatility burst too much, allowing for a stronger discrimination but less
frequent opportunities. The average pro�t per trade measure results in an average
number of trades per year ranging between 1.1 and 1.8. With the total pro�t criteria,
the average number of trades per year increases to between 2 and 3.6. Interestingly,
the average pro�t per trade does not translate into a higher win rate in validation
despite being more selective. The maximisation of the pro�t per trade implies a
greater gain per trade on the winning trades, but not a higher win rate, and a lower
trading frequency when compared to maximising the total pro�t.

Strategy

performance measure Total Pro�t Total Pro�t Total Pro�t Total Pro�t Pro�t Per Trade Pro�t Per Trade Pro�t Per Trade
benchmark
strategy
reversion

benchmark
strategy
buy&hold

scaling type 20-day std 20-day std garch 1,1 garch 1,1 60-day std 60-day std garch 1,1

EWMA alpha 0.15 0.15 0.15 0.2 0.15 0.2 0.2

core strategy 1 2 1 1 1 1 1

Calibration

average yearly number of trades 4.33 2.74 4.57 4.53 2.14 1.84 0.97 - -

median yearly number of trades 4.11 2.62 5.33 5.40 1.74 1.74 1.04 - -

average p_value in multiple testing 0.00078 0.00542 0.00032 0.00053 0.00090 0.00084 0.00073 - -

median p_value in multiple testing 0.00032 0.00408 0.00030 0.00049 0.00112 0.00085 0.00059 - -

average net pro�t per trade [$/bbl] 0.53 0.49 0.61 0.64 0.92 1.01 1.46 - -

median net pro�t per trade [$/bbl] 0.59 0.55 0.53 0.48 0.95 0.95 1.41 - -

average yearly total net pro�t [$/bbl] 2.09 1.37 2.41 2.27 1.74 1.48 1.42 - -

median yearly total net pro�t [$/bbl] 2.31 1.43 2.65 2.58 1.54 1.54 1.60 - -

average winrate 60% 67% 60% 60% 60% 63% 89% - -

median winrate 58% 65% 59% 59% 63% 64% 94% - -

Calibration
results

average threshold [$/bbl] 1.45 1.57 1.45 1.45 1.90 1.94 1.88 - -

median threshold [$/bbl] 1.60 1.70 1.45 1.45 2.00 2.00 1.95 - -

average holding period [days] 4.0 4.3 4.3 4.3 4.2 4.4 5.0 - -

median holding period [days] 4 4 4 4 4 4 5 - -

Validation
with stop loss
and take pro�t

average yearly number of trades 3.5 2.0 3.6 3.5 1.8 1.7 1.1 3 3

median yearly number of trades 3.0 2.0 4.2 4.2 1.5 1.0 1.0 3 3

average net pro�t per trade [$/bbl] 0.25 0.36 0.73 0.74 0.78 0.78 0.68 -0.22 -0.18

median net pro�t per trade [$/bbl] 0.27 0.58 0.15 0.18 0.66 0.66 0.44 -0.22 -0.18

average yearly total net pro�t [$/bbl] 1.03 0.68 0.54 0.60 0.75 0.81 0.67 -2.67 -2.12

median yearly total net pro�t [$/bbl] 1.19 1.31 0.76 0.87 1.20 1.20 0.70 -2.65 -2.11

average winrate 56.7% 65.6% 61.9% 63.3% 62.5% 62.5% 52.1% 36.1% 39.6%

median winrate 63.0% 67.0% 55.0% 58.0% 75.0% 75.0% 54.0% 34.2% 42.0%

Share of successful CV (out of 5) 100% 100% 80% 80% 100% 100% 80% 100% 100%

Table 2: Results from the 5-fold cross-validation. The most successful parameter combinations
are presented in this table. The full results are displayed in Appendix A. The �rst 4 lines de-
scribe parameters, the following 10 describe calibration statistics, the next 4 the calibration results
(threshold and holding period) and the remaining the validation statistics. A cross-validation is
considered successful if a statistically signi�cant combination of threshold and holding period is
found and trades are triggered in validation.

Lastly, both performance measures di�er in the impact of the stop-loss and take-
pro�t on the net pro�ts. In both cases, the use of this risk management tool reduces
the pro�ts, but it is the case to a larger extent for Total Pro�t strategies. It is also
noteworthy that using stop-loss and take-pro�t decreases the standard deviation of
the average winrates across the selected strategies (from 8% to 6%) and increases
the winrate on average (from 57% to 61%).
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The results from the backtest reinforce the �ndings from the non-parametric
estimation. The optimal trading rule threshold is in the same range as where the
mean reversion becomes stronger according to the non-parametric estimation of the
drift term (Figure 4). The backtest also indicates an optimal holding period of 4
days in most cases, in line with the Monte Carlo simulations. Another testament to
the robustness of the mean reversion property of naphtha crack behind our trading
strategies is that averaging the performance of the entire universe of 24 strategies still
yields a positive return. Averaging validation results across all 24 tested strategies,
we obtain $0.26/bbl net pro�t per trade, $0.45/bbl yearly net total pro�t, and 53.9%
winrate when using total pro�t as a performance measure. When using pro�t per
trade as a performance measure, we get $0.19/bbl net pro�t per trade, $0.23/bbl
yearly net total pro�t, and 43.6% win rate.

5.4. Benchmark trading strategies

In order to further establish the signi�cance of the performance of the selected
strategies, we compare the results to two benchmark strategies. The �rst is a simple
reversion strategy, and the second just a buy and hold strategy where a long position
is taken until the end of the holding period. As in Lubnau and Todorova (2015), the
entry points are selected randomly over the validation set. The number of trades is
set to 3 per year in order to be comparable to the frequency of trading of the our
selected strategies. The holding period is selected randomly between 1 and 5 days,
again in line with the selected strategies. For each of the 5 validations samples, we
perform 10, 000 runs of the two benchmark strategies and average the results. The
reversion benchmark strategy performs the worst with an average net pro�t per trade
of $-0.22/bbl. The buy and hold benchmark strategy performs slightly better but still
at a loss, with an average net pro�t per trade of $-0.18/bbl. Contrary to strategies
selected in the backtest, not using the stop-loss and take-pro�t rules results in even
worst performance. Without the stop-loss and take-pro�t rules, the average net pro�t
per trade decreases to $-0.25/bbl and $-0.20/bbl for the reversion and the buy and
hold benchmark strategies. Despite evidence of mean reversion at any level from the
non-parametric estimation of Section 4.2, the reversion benchmark strategy does not
deliver positive net pro�ts even if ignoring the transaction costs. The buy and hold
benchmark strategy net pro�ts are close to 0 but only when ignoring transaction
costs.

5.5. Potential causes of short term market ine�ciencies

The fact that our selected strategies are able to deliver robust positive returns
after transaction costs implies the presence of at least temporary market ine�ciencies
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where the Law of One Price is not fully enforced, similarly to the discussion in Gatev
et al. (2006). In the present section, we propose three causes for the presence of short
term market ine�ciencies a�ecting the naphtha crack. Firstly, one potential reason
is the di�erence in liquidity and the di�erent players active in the naphtha swaps and
the Brent futures markets that we discussed in Section 3. Brent futures are traded
mostly on electronic platforms with a large variety of market participants including
algorithmic and high frequency traders. On the other hand, naphtha swaps trade
virtually exclusively through brokers and between a more limited pool of specialised
players. The result is that naphtha prices are slower to react to information. Intra-
day liquidity patterns might further exacerbate this characteristic. The greatest
liquidity for naphtha swaps is observed during the Platts MOC assessment ending at
16:30 London time, while our daily naphtha crack prices are taken at 19:30 London
time when Brent futures are settled. Therefore, we analyse the crack spread data
at a point in time when the naphtha leg has had low liquidity for three hours while
the Brent leg is still strongly active. It can result in the naphtha price to align itself
back with Brent only the day after the Brent move ends, thus causing a short-term
reversion in the naphtha crack. Secondly, another possible cause for the temporary
disconnect can be the sometimes low liquidity of the naphtha market alone. Large
volume trades in a context of low liquidity can cause the price to slip beyond its
fundament value, and revert back to the fair price shortly after. Thirdly, as discussed
in Section 3, naphtha is often traded as a spread to other products such as gasoline
or propane, and is also a�ected by the oil versus natural gas relationship. Events in
gasoline or propane markets can result in exaggerated short-term moves in naphtha
crack prices, and result in a subsequent reversion to the fair value.

6. Conclusion

This paper investigates short term ine�ciencies in the price of the naphtha crack,
a mostly OTC traded security that corresponds to a long naphtha and a short Brent
exposure. First, we describe the speci�cities of the naphtha versus the Brent markets.
We describe the time series of interest, how we roll contracts and standardize daily
price changes, and present the main statistical properties. We explain what trading
fees and transaction costs are incurred when trading the naphtha crack.

Next, we model the dynamics of the standardised naphtha crack changes by means
of drift and di�usion terms, de�ned as a function of the value of the standardised
daily changes and assuming that the series follows an arithmetic Brownian motion.
We estimate the drift and di�usion non-parametrically, in a similar way to Stanton
(1997) and Prigent et al. (2001). Studying the drift coe�cient, we observe a non
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linear increase in the rate of reversion when daily changes exceed about $1/bbl for
all three standardisation methods (20-day trailing standard deviation, GARCH(1,1)
volatility, and 60-day trailing standard deviation). We run Monte Carlo simulations
to get insights into the magnitude and duration of the reversion e�ect, and propose
a method to convert the simulation results back to de-standardized returns. Our
simulations show the mean reversion e�ect to be stronger than transaction costs for
all three standardization methods, with most of the reversion taking place on the
�rst day.

Finally, building on top of the �ndings from the non-parametric estimation, we
backtest simple mean reversion trading strategies. Throughout this process, transac-
tion costs are included. The optimal threshold for trigerring a trade and the holding
period are de�ned in the calibration phase. The thresholds obtained in calibration
correspond to the in�exion point in the non-paramtric drift term estimate, at be-
tween $1.4/bbl and $2/bbl. The optimal holding period is 4 days. Based on win
rate and cross validation performance criteria, we are able to identify 7 strategies
generating robust outperformance. The selected strategies generate on average an
out-of-sample net pro�t per trade of $0.62/bbl, a yearly total net pro�t of $0.73/bbl,
and a win rate of more than 60%. Further con�rming the robustness of the mean
reversion property of the naphtha crack, simply taking the average of all the strate-
gies in our universe delivers positive returns. We also show that our strategies beat
dummy benchmark strategies.

We identify three possible causes for short-term market ine�ciencies a�ecting
naphtha crack prices. The �rst is the di�erentce in reaction speed to market events
due to di�erences in trading venues (OTC versus electronic) and number of market
participants. The second cause is the low naphtha markets liquidity alone that
can push prices for up to a day when large transactions are executed before prices
correct back. The third potential cause is the fact that naphtha often trades as a
spread to gasoline or propane. Sharp moves in gasoline or propane can temporarily
shift the napthha crack price away from its fair value. Our �ndings of positive
outperformance points towards the fact that the OTC market for naphtha can be
ine�cient in the short term. It constitutes an opportunity for the arbitrageur to
correct these short-term ine�ciencies, and get rewarded for enforcing the Law of
One Price (Gatev et al., 2006). One area for future research would be to decompose
the naphtha price movement into its naphtha and Brent components when a trade
signal is trigerred, with particular focus on their evolution between the Platts MOC
and Brent settlement. Investigating concurrent �uctuations propane and gasoline
swaps would also provide further insights.
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Appendix A. Comprehensive backtesting results

Strategy

cross_val_id 3 4 7 8 11 12 15 16 19 20 23 24

scaling_type std 20 days std 20 days std 20 days std 20 days std 60 days std 60 days std 60 days std 60 days garch 1,1 garch 1,1 garch 1,1 garch 1,1

smoothing EWMA alpha 0.15 0.15 0.2 0.2 0.15 0.15 0.2 0.2 0.15 0.15 0.2 0.2

core strategy 1 2 1 2 1 2 1 2 1 2 1 2

Calibration

average yearly number of trades 4.33 2.74 5.80 5.03 3.61 17.32 3.59 17.27 4.57 3.05 4.53 3.67

median yearly number of trades 4.11 2.62 5.30 4.36 3.61 22.42 3.61 22.42 5.33 3.05 5.4 3.67

average p_value in multiple testing 0.00078 0.00542 0.00140 0.00536 0.00075 0.00492 0.00040 0.00641 0.00032 0.00179 0.00053 0.00299

median p_value in multiple testing 0.00032 0.00408 0.00067 0.00333 0.00037 0.00088 0.00005 0.00136 0.00030 0.00179 0.00049 0.00299

average net pro�t per trade [$/bbl] 0.53 0.49 0.41 0.34 0.61 0.26 0.64 0.108 0.607 0.528 0.636 0.49

median net pro�t per trade [$/bbl] 0.59 0.55 0.43 0.32 0.54 0.11 0.69 0.11 0.53 0.53 0.48 0.49

average yearly total net pro�t [$/bbl] 2.09 1.37 2.12 1.55 2.17 1.69 2.30 1.63 2.41 1.61 2.27 1.50

median yearly total net pro�t [$/bbl] 2.31 1.43 2.39 1.90 2.17 1.73 2.58 1.39 2.65 1.61 2.58 1.50

average winrate 60% 67% 60% 67% 56% 63% 57% 62% 60% 66% 60% 70%

median winrate 58% 65% 59% 71% 55% 62% 57% 64% 59% 69% 59% 74%

Calibration
results

average threshold [$/bbl] 1.45 1.57 1.35 1.40 1.60 1.18 1.58 1.06 1.45 1.4 1.45 1.4

median threshold [$/bbl] 1.60 1.70 1.40 1.30 1.70 1.00 1.70 1.00 1.45 1.4 1.45 1.4

average holding period 4.0 4.3 4.0 4.3 4.0 4.2 4.0 4 4.25 4.5 4.25 4.5

median holding period 4 4 4 4 4 4 4 4 4 4.5 4 4.5

Validation

average yearly number of trades 3.5 2.0 5.2 4.3 3.1 15.3 3.4 16.25 4 3.0 3.49 2.74

median yearly number of trades 3.0 2.0 4.5 3.0 3.5 20.0 3.5 20.46 4.24 3 4.24 2.74

average net pro�t per trade [$/bbl] 0.46 0.48 0.24 0.32 0.70 0.32 0.80 0.10 0.88 0.30 0.90 0.33

median net pro�t per trade [$/bbl] 0.47 0.58 0.02 -0.07 0.65 -0.02 0.65 -0.02 0.29 0.3 0.32 0.33

average yearly total net pro�t [$/bbl] 2.04 0.85 1.27 -0.09 2.47 0.16 2.58 0.87 0.92 0.73 0.98 0.38

median yearly total net pro�t [$/bbl] 1.40 1.46 -0.16 -0.66 2.27 -0.36 2.27 -0.50 1.36 0.73 1.36 0.38

average winrate 57.0% 75.0% 45.0% 42.0% 52.0% 50.0% 56.0% 51.0% 52.0% 67% 54% 55%

median winrate 63.0% 80.0% 47.0% 39.0% 50.0% 53.0% 50.0% 51.0% 55.0% 69% 58% 58%

Validation
with stop loss
and take pro�t

average net pro�t per trade [$/bbl] 0.25 0.36 0.01 -0.18 0.36 0.31 0.45 -0.01 0.73 0.20 0.74 -0.14

median net pro�t per trade [$/bbl] 0.27 0.58 -0.07 -0.13 0.65 -0.02 0.65 -0.02 0.15 0.2 0.18 -0.14

average yearly total net pro�t [$/bbl] 1.04 0.68 0.06 -0.73 1.43 -0.04 1.54 0.13 0.54 0.47 0.60 -0.34

median yearly total net pro�t [$/bbl] 1.19 1.31 -0.49 -0.94 2.20 -0.36 2.20 -0.50 0.76 0.47 0.87 -0.34

average winrate 56.7% 65.6% 46.3% 40.7% 46.1% 58.7% 56.1% 50.9% 61.9% 59% 63% 42%

median winrate 63.0% 67.0% 47.0% 39.0% 50.0% 53.0% 50.0% 51.0% 55.0% 59% 58% 42%

share of successful CV (out of 5) 100% 100% 80% 60% 100% 100% 100% 100% 80% 40% 80% 40%

Table A.3: Results from the 5-fold cross-validation with performance measure: Total Pro�t. The
�rst 4 lines describe parameters, the following 10 describe calibration statistics, the next 4 the
calibration results (threshold and holding period) and the remaining the validation statistics. A
cross-validation is considered successful if a statistically signi�cant combination of threshold and
holding period was found and trades were triggered in validation.
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Strategy

cross_val_id 1 2 5 6 9 10 13 14 17 18 21 22

scaling_type std 20 days std 20 days std 20 days std 20 days std 60 days std 60 days std 60 days std 60 days garch 1,1 garch 1,1 garch 1,1 garch 1,1

smoothing EWMA alpha 0.15 0.15 0.2 0.2 0.15 0.15 0.2 0.2 0.15 0.15 0.2 0.2

core strategy 1 2 1 2 1 2 1 2 1 2 1 2

Calibration

average yearly number of trades 1.96 2.12 1.84 2.16 2.14 4.01 1.84 2.742 1.1075 0.835 0.97 0.76

median yearly number of trades 2.37 2.62 1.81 2.74 1.74 2.12 1.74 2.12 1.32 0.84 1.04 0.76

average p_value in multiple testing 0.00068 0.01267 0.00261 0.01741 0.00090 0.01751 0.00084 0.01754 0.00026 0.00400 0.00073 0.00647

median p_value in multiple testing 0.00070 0.00408 0.00169 0.00541 0.00112 0.01976 0.00085 0.02191 0.00023 0.00400 0.00059 0.00647

average net pro�t per trade [$/bbl] 0.95 0.62 0.98 0.62 0.92 0.49 1.01 0.5742 1.53175 1.1845 1.46075 1.092

median net pro�t per trade [$/bbl] 0.86 0.59 0.92 0.58 0.95 0.46 0.95 0.49 1.55 1.18 1.41 1.09

average yearly total net pro�t [$/bbl] 1.64 1.24 1.46 1.20 1.74 0.90 1.48 0.958 1.6425 0.97 1.4175 0.86

median yearly total net pro�t [$/bbl] 1.90 1.43 1.39 1.37 1.54 0.82 1.54 0.98 1.84 0.97 1.6 0.86

average winrate 67% 65% 63% 65% 60% 64% 63% 65% 91% 92% 89% 91%

median winrate 71% 65% 67% 67% 63% 64% 64% 64% 95% 94% 94% 93%

Calibration
results

average threshold [$/bbl] 1.80 1.77 1.85 1.80 1.90 1.76 1.94 1.82 1.95 1.95 1.875 1.8

median threshold [$/bbl] 1.80 1.70 1.85 1.70 2.00 1.90 2.00 2 1.95 1.95 1.95 1.8

average holding period 4.8 4.3 4.5 4.3 4.2 4.4 4.4 4.4 5 5 5 5

median holding period 5 4 5 4 4 4 4 4 5 5 5 5

Validation

average yearly number of trades 1.6 1.5 1.6 1.5 1.8 3.5 1.7 2.792 1 0.25 1.1225 0.5

median yearly number of trades 2.0 2.0 2.0 2.0 1.5 1.0 1.0 1 1 0.25 1 0.5

average net pro�t per trade [$/bbl] -0.06 0.07 0.07 0.07 0.84 0.33 0.84 0.34 -0.01 -0.743 0.772 0.122

median net pro�t per trade [$/bbl] -0.14 0.00 -0.05 0.00 0.66 0.20 0.66 0.20 0.00 -0.74 0.47 0.12

average yearly total net pro�t [$/bbl] 0.02 0.24 0.22 0.24 0.78 0.04 0.84 0.23 0.35 -0.37 0.74 0.06

median yearly total net pro�t [$/bbl] -0.35 0.00 -0.10 0.00 1.20 0.20 1.20 0.20 -0.01 -0.37 0.78 0.06

average winrate 39.0% 67.0% 46.0% 67.0% 50.0% 49.0% 53.0% 54.0% 50.0% 0% 56% 50%

median winrate 10.0% 50.0% 25.0% 50.0% 75.0% 50.0% 75.0% 50.0% 17.0% 0% 54% 50%

Validation
with stop loss
and take pro�t

average net pro�t per trade [$/bbl] -0.10 0.07 0.07 0.07 0.78 0.32 0.78 0.32 -0.02 -0.743 0.6765 0.122

median net pro�t per trade [$/bbl] -0.23 0.00 -0.05 0.00 0.66 0.20 0.66 0.20 0.00 -0.74 0.44 0.12

average yearly total net pro�t [$/bbl] -0.09 0.24 0.22 0.24 0.75 -0.11 0.81 0.07 0.32 -0.37 0.67 0.06

median yearly total net pro�t [$/bbl] -0.50 0.00 -0.10 0.00 1.20 0.20 1.20 0.20 -0.01 -0.37 0.7 0.06

average winrate 25.0% 43.3% 32.5% 43.3% 62.5% 62.1% 62.5% 63.0% 27.1% 0% 52% 50%

median winrate 10.0% 50.0% 25.0% 50.0% 75.0% 50.0% 75.0% 50.0% 17.0% 0% 54% 50%

share of successful CV (out of 5) 80% 60% 60% 40% 100% 100% 100% 100% 60% 20% 80% 40%

Table A.4: Results from the 5-fold cross-validation with performance measure: Pro�t per Trade.
The �rst 4 lines describe parameters, the following 10 describe calibration statistics, the next 4 the
calibration results (threshold and holding period) and the remaining the validation statistics. A
cross-validation is considered successful if a statistically signi�cant combination of threshold and
holding period was found and trades were triggered in validation.

Appendix B. Converting simulated standardized changes back to raw changes

Dividing the time series of standardised daily naphtha crack price changes by its
volatility enhances stationarity by mitigating the impact of heteroscedasticity. This
transformation stabilizes the statistical properties of the series over time, making it
more amenable to analysis and modeling. Given that the aim of such an analysis is
to develop pro�table trading strategies, and that these strategies are evaluated on
the grounds of their performance in relation to the raw Delta, there is a need to de-
standardise the standardised Delta. To do so, we employ an Ordinary Least Squares
(OLS) regression and generate stochastic errors based on a functional Johnson's SU

distribution (Johnson, 1949) �tted to the residuals. From this point until the end of
this section, we use the Delta standardised by the 60-day rolling historical standard
deviation with an α = 0.2 EWMA smoothing as an example for the procedure used.

We then divide the range of standardised Delta into 20 buckets, each containing
the corresponding residuals. For each bucket containing more than 30 values, we
�t a Johnson's SU distribution to model the residuals. The 4 parameters of the
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distribution are plotted as a function of the bucket midpoint in Figure C.9. For a
given standardised Delta, we estimate a de-standardised Delta by �rst computing
an OLS prediction of the de-standardised Delta and by adding an error term drawn
from a Johnson SU distribution, which parameters are de�ned as a function of the
standardised Delta via linear �t or interpolation. The de�nition of this distribution
can be found in Appendix C. Figure B.8 shows the de-standardised Delta obtained
through this procedure for the 60-day rolling historical standard deviation case.
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Figure B.7: Standardised Delta to Delta OLS regression and residuals visualisation. For the scatter
plot of the Delta as a function of the standardised Delta, an OLS model is �tted and shown as a
red line. For the scatter plot of the OLS residuals as a function of the standardised Delta. The
red dashed line is the 0-line, referring to the OLS model. The standardisation series used in this
example is the 60-day historical rolling standard deviation.

Appendix C. The Johnson's SU distribution

The probability density function (PDF) of the Johnson's SU distribution is given
by:

f(x; γ, δ, ξ, λ) =
δ

λ
√
2π

1√
1 +

(
x−ξ
λ

)2 exp
(
−1

2

[
γ + δ sinh−1

(
x− ξ

λ

)]2)
,

where γ is the shape parameter controlling skewness, δ is the shape parameter
controlling kurtosis, ξ is the location parameter, and λ is the scale parameter.
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Figure B.8: De-standardisation of the standardised Delta. The blue + markers represent the true
association of the standardised Delta to Delta. The orange • markers represent the stochastically
generated (via �tted OLS and Johnson's SU sampled residuals) association. The top left frame is
an inset plot showing the same data with a greater resolution. The standardisation series used in
this example is the 60-day historical rolling standard deviation.
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Figure C.9: Parameters of the �tted Johnson's SU distributions as a function of standardised Delta.
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